SOLUTION TO THE GRIPPER
ENVELOPE PROBLEM USING
A PLANAR SWEEP

NAGW-1333

by

Henry L. Welch

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering Department
Troy, New York 12180-3590

April 1992

CIRSSE REPORT #111

Solution to the Gripper Envelope Problem Using a Planar Sweep
HENRY L. WELCH

Abstract -- The determination of sweep shadows is important when analyzing the potential
interference effects of obstacles in a robotic environment and is well suited for application to the
gripper envelope problem. This report presents techniques for generating the planar sweep shadow
of polyhedral objects. Algorithmic details for computing the sweep shadow for both straight-line
and simple-rotation trajectories are described. Methods for analyzing the resultant sweep shadow
are also presented and the time complexity of the algorithms is discussed. Various test cases are
provided in an appendix showing the actual results generated by software solving the problem.

Table of Contents

1.0 Introduction
2.0 Background
2.1 The Gripper Envelope
2.2 The Plane Sweep Algorithm
3.0 Generation of Sweep Shadows
3.1 Straight Line Trajectories
3.1.1 Projection in Cartesian Coordinates
3.1.2 Clipping Edges of Objects
3.1.3 Closing Object Faces
3.2 Simple Rotations
3.2.1 The Basic Solution
3.2.1.1 Defining the Cylindrical Coordinate System
3.2.1.2 Converting Data to the Sweep Reference System
3.2.1.3 Clipping Edges Against the Rotational Sweep Wedge
3.2.1.4 Closing Faces Against the Rotational Sweep Wedge
3.2.2 Discovered Inadequacies of the Current Solution
3.2.2.1 Dealing with Rotational Angles Greater than &t
3.2.2.2 Solving the Minimal Radius Edge Problem
3.2.3 The Complete Solution
3.2.4 Results
4.0 Analyzing the Sweep Shadow
5.0 The Complete Plane Sweep Algorithm
6.0 Conclusion
7.0 Future Research
Appendix A: Sample Test Cases
Appendix B: OnLine User's Document
Appendix C: Software Listings

1.0 Introduction

The order in which an assembly is performed can drastically affect the overall time it takes to
perform that assembly. A good ordering can reduce the number of assembly errors and
manufacturing difficulties. For example, some alternate assembly sequences may require less
fixturing or fewer changes of tools and grippers than others. It may be possible, by assembling
different parts at different times, to develop sequences which have mating trajectories with fewer
and more distant obstacles to avoid. Such a choice could thereby result in simpler and more reliable

assembly operations.

One the goals of this report to answer some of the questions posed by the calculation of geometric
feasibility. Geometric feasibility determines whether or not two subassemblies can be properly
mated along a collision free trajectory. Related to this calculation is the determination of the gripper
envelope, or the volume available for the gripper, during an assembly operation. The goal of these
types of calculations is to determine the potential interference effects of obstacles in the

environment.

The appendices serve as an aid for bridging the gap between the algorithmic details presented and
the software package which implements these ideas.

2.0 Background

A significant body of research has been compiled in recent years which addresses the question of

assembly sequence planning. In most cases the basic approach is to use the geometric relationships

between parts and the idea of geometric feasibility to generate a list of all the possible feasible

assembly sequences. Differences between the various approaches involve the method by which

:]sscn}tll):y sequences are represented and the degree and type of operator interaction required by the
gorithm. .

Two of the earliest attempts, by Ko and Lee [Ko] and Fox and Kempf [Fox], use a precedence
graph to represent the relationship between the various assembly tasks and require the operator to
supply all the geometric feasibility information. Further work by De Fazio and Whitney [De Fazio
87, De Fazio 88] uses directed graphs of assembly states and provides a consistent set of operator
questions for determining geometric feasibility. Later, Homem de Mello and Sanderson [Homem
86, Homem 88] propose the use of AND/OR graphs of subassemblies to represent the assembly
sequences and provide an algorithm for analyzing geometric feasibility.

A common element missing from all these approaches is the ability to rank the various assembly
sequences so as to be able to determine the sequence most likely to be successful. Among the
factors which may be used to rank sequences and specific operations in the sequence are the size
and shape of the gripper envelope and the subassembly stability (in the presence of friction and

gravity).

Figure 1 shows a proposed blueprint for the architecture of an assembly sequence planner. Many
of the modules depicted exist, in one form or another, as research efforts throughout the literature
[Welch]. The notable exception is the module for performing gripper envelope analysis. In this
paper the issues related to determining the bounds on the gripper envelope are addressed.

2.1 The Gripper Envelope
Humans and robots are both similar in that each need an envelope or volume in which to perform

actions. In most cases the volume required for an action is centered about the object being acted
upon and changes as the operator moves the object past obstacles in the environment. There are

Jouueyd aouanbas Ajquissse ue 103 weYD ANONLS Jiseyq - | ANSL]

192k psuy 1019913 19UuR| g 1zheuy
SOUBI 12410 adoaaug 1oddun g dswin Ageg
131151 Fliie) oIy Jomar) ydein 12Uy lojoenyy
dag uoneouIA ydeip usnbag A|quiassy ydein) sueg ydeio sueg
Bpuey 101932) uBy RZSAUAS
am[re souanbag souanbag 2ouanbag

ouanbog Ajquiassy

two techniques which can be used to deal with the problem. The first requires full geometric data
on the robot or agent performing the assembly. An algorithm for detecting collisions, for example,
is one proposed by Mirolo and Pagello [Mirolo]. The second technique performs the motion
without the presence of the agent and generates the volume not occupied by obstacles for later
analysis. This second technique is the one being considered here because it provides a non-robot-

specific solution.

Initially the calculation of the gripper envelope closely resembles the volume sweeping problem, as
described by Wang and Wang [Wang], in which the obstacles in the environment sweep out
volumes which cannot be occupied by either the part being mated or the mechanism moving the
part. However, by limiting the types of motions that an object may follow, the problem can be

simplified.
2.2 The Plane Sweep Algorithm

As is commonly the case in both robotics and other fields a problem is first partially solved by
making restrictions to the shapes of geometric entities. In the field of robotics this usually involves
restrictions to the types of paths possible in mating trajectories and to the shapes of objects being
represented. Another common assumption in robotics is that the geometric relationship between
that object and the hand/fingers of the agent remains fixed from the time an object is grasped until
the time it is released. This eliminates many types of uncertainty that are difficult to model.

The most common limitation on the shapes of geometric entities is to limit objects to the set of
convex polyhedrons as demonstrated by Mirolo and Pagello [Mirolo]. A less restrictive class of
objects would be those possessing planar faces. This is a common technique in surface modeling
and yields accurate approximations of most objects [see Blinn, Foley, and Turner]. This is the
class of objects used throughout the rest of this paper.

From basic mechanics, it is known that all forms of motion can be broken up into two distinct
components. The first component is tangential to the direction of motion and the second component
is normal to it. Generalizing the concept to volume sweeping divides the volume being swept into a
cross-sectional area perpendicular to the direction of sweeping and a distance along the direction of

sweeping.

The cross-sectional area of the gripper with respect to the mating trajectory is constant due to the
fixed relationship between the object and the robot agent's hand and the limitation of the mating
trajectories to paths with uniform tangential components, . Examples of trajectory paths which fit
this criterion are straight line segments, simple rotations, helical paths, and constant radius curves.
Thus, by looking at the projected sweep shadow cast by obstacles in the direction of the path
tangent, an estimate of the cross-section available for a robot’s hand can be made.

3.0 Generation of Sweep Shadows

These shadows can be generated by sweeping a plane along the direction of the motion and
marking the cross-sectional area of the obstacles encountered by the plane. Hence, the name "The
Plane Sweep Algorithm." The next few sections describe the details for computing the projected

shadows in the sweep plane.

3.1 Straight Line Trajectories

The generation of sweep shadows for straight line segments is straightforward. As described
previously, the plane sweep algorithm generates these shadows by sweeping a plane along the
direction of motion and determines which of the objects in the environment intersect with the plane
and they do so. This problem is similar to projection in a cartesian coordinate system as shown in

Figure 2.a. In order to generate the proper shadow, three main functions need to be performed.
These are the projection of data, the clipping of unwanted data from the projection, and the closure
of faces and objects brought abonut by the clipping process. These functions are described below.

z r4 7
.__———/
Y Y
¢
X X
(a) (b)

Figure 2. (a) Sweeping a plane along a straight line segment. Sweeping the XY-plane along the
Z-axis can be accomplished by projecting the cube onto the XY-plane.
(b) Sweeping plane through a simple rotation. Rotating the XZ-plane about the Z-axis
can be accomplished by projecting the cube along the ¢ direction.

3.1.1 Projection in Cartesian Coordinates

Projection in a cartesian coordinate system is the simplest form of data projection,
especially if it is along one of the primary axes of that coordinate system. This is done by simply
eliminating the coordinate of the axis that is in the direction of the projection. For simplicity,
define the x-axis of the projection coordinate system as the direction of the motion and the origin of
the projection coordinate system as the starting point of the motion. By defining other suitable
axes for the y and z directions of the projection coordinate system the object data, as represented by
P, can be converted to the projection coordinate system by using a coordinate transformation, 7, as
shown below [Selby, p. 369].

-1
[P-Prl=[abclT) —>[abcl=[P-Pr[T]

3.1.2 Clipping Edges of Objects

Once the object data is converted to the new coordinate system it can be projected to the
sweep plane by eliminating the x coordinate. This is not sufficient, though, to generate the correct
sweep shadow since the sweep plane only traverses a finite segment of the x-axis. The removal of
unwanted data is called clipping. The most common form of clipping performed in programming
today is with respect to screen or window boundaries in computer graphics [Hearn, pp. 128-134].
The general approach is to clip the edges of an object with respect to one boundary at a time. In the
case of the motion described above, the clipping planes are at x = 0 and x = length (of the motion).
This can be done by parameterizing each edge and removing the unwanted portions.

3.1.3 Closing Object Faces

There is a side effect to the clipping operation. This is caused by the portions of objects
that are removed at the boundaries of the clipping region. Unless extra edges are added to the
clipped object then the clipped object is left open at the boundary of the clipping region. This is
corrected by the process of closure. The simplest way to close the face of an object is to traverse
its edges in an orderly fashion. When an edge leaves the clipping region (i.e. outside of the area to
be swept) this location is recorded. When the next edge is found which reenters the clipping
region then a new edge is added which connects the point where the face left the clipping region
and where it reenters. This automatically closes each face and object [Hearn].

3.2 Simple Rotations

The goal of the rotational sweep shadow problem is to compute the areas in the radius-height plane
which are swept by a full plane sweeping through an angle in the specified rotational reference
frame given the arbitrary rotational reference frame, the angle to rotate through, and the
environment of obstacles. More specifically, given an arbitrary axis of rotation, center of the
rotation space, a reference point defining the starting location of the sweep plane, and an angle to
rotate the plane through, sweep the plane through the rotation and record all the areas on the plane
that are swept out by obstacles in the environment.

The rotation of a full plane is necessary since it is unknown which half of the sweep space is
important relative to the reference point. For example, consider a hand drill with a T shaped
handle. While it is sufficient to represent its orientation by specifying the location of one side of
the handle, both sides of the handle may encounter obstacles when it rotates.

Upon further consideration, this problem reduces to the projection of data (through the angular
coordinate) in an arbitrary cylindrical coordinate system, as shown in Figure 2.b, with the added
consideration of clipping at the initial and final location of the sweep plane. There are also some
other complications brought about since the plane being swept is a full plane and not the half-plane
usually associated with a cylindrical coordinate system. The two most obvious complications are
the inclusion of data points containing both positive and negative radii (something not allowed in a
strict cylindrical coordinate system) and, when the rotational angle is greater than &, points on an
obstacle may appear in both the positive and negative sides of the sweep plane. These are some of
the features which make this problem interesting.

3.2.1 The Basic Solution

Having defined the rotational sweep shadow problem, it is now possible to explore solutions to the
problem. Since the sweeping operation reduces to projection through the angle of rotation in a
cylindrical coordinate system, it is advantageous to use cylindrical coordinates in the solution of the
problem. Since clipping and closure are also considerations, algorithms to accomplish these
operations are needed. Figure 3 shows a simplified description of the algorithm to be used.

The next few sections describe in detail the various calculations necessary to implement the
algorithm.

3.2.1.1 Defining the Cylindrical Coordinate System

The initial step in solving the rotational sweep shadow problem is to develop a representational
formalism that simply and compactly defines the relevant data. Figure 4 shows how an arbitrary
point in the environment can be represented in terms of a cylindrical coordinate system defined by

the rotation.

procedure GENERATE_ROTATIONAL_SWEEP_SHADOW;
specify and define the cylindrical coordinate system for the sweep;
for each object in the environment;
for each face on the object;
for each edge on the face;
convert the edge to the sweep coordinate system;
sweep the edge and clip as necessary;
close with the previous edge if necessary;
close the face between the initial and final vertices; -
end-procedure;

Figure 3. A simplified algorithm for solving the rotational sweep shadow problem.

h=(P'Pr) ‘nr

r=J/(P-P; *h) *

P T

r

Figure 4. An arbitrary cylindrical coordinate system defined by a spatial rotation.

One problem with the formalism of Figure 4 is that it does not specify the angular component of
the point P. To do this, a cartesian coordinate system must be built around the cylindrical system
so that a reference direction for the angular component can be defined. The first obvious choice of
axis is to use the axis of rotation as the new cartesian z-axis. Specifying the new cartesian x- and y-
axes requires more thought. Since a reference point representing the starting location of the rotation
plane has already been specified it would be advantageous to use this to define the new cartesian x-
axis. In general the direction from the center of the rotation to the reference point is not orthogonal
to the already chosen z-axis. The solution to this is to use the Gram-Schmidt orthonormalization
technique to specify the x-axis orthogonal to the existing z-axis [Hoffman, p. 280]. The y-axis
then follows naturally in the right hand sense as the vector cross product between the z-axis and the
X-axis.

3.2.1.2 Converting Data to the Sweep Reference System

Now that the sweep reference system is defined it is necessary to convert all the environment data
to that coordinate system. Letting T represent a coordinate transformation matrix from the global
coordinate system to the sweep reference system using the x-, y-, and z-axes defined in the

previous section. A matrix notation can be used to convert the coordinate P, as defined in Figure 4,
to the r, 6, and 4 of the sweep reference system by first finding the scalar components, [a b c], of
the position vector P in the sweep reference system as shown below [Selby, p. 369].

-1
[P-Prl=[abc)T] > [abc]l=[P-Pr][T]

r=Va2 + b2
6= tan‘I(g)

h=c
3.2.1.3 Clipping Edges Against the Rotational Sweep Wedge

In a rectangular system the clipping of edges against a fixed planar boundary is straightforward and
yields relatively few difficulties [Hearn, pp. 128-134]. Extending the idea of clipping to two
parallel planar faces involves clipping against each of the planar faces individually. It would appear
that the same basic idea can be used to clip an edge against the two constant 6-planes which bound
the rotational sweep wedge; however, this is not entirely true.

If the calculation of the rotational sweep shadow involved only the rotation of a half-plane then
clipping against the two constant @ sides of the wedge would sufficiently clip the end or ends of
each edge. However, a consideration of both positive and negative wedges reveals that edges
swept by the negative radius half of the sweep plane must be clipped to the opposite sides of the
constant 6 wedge boundaries. This requires clipping of each edge against four boundaries to solve
the problem. It is also possible to clip each edge against the two positive radius wedge boundaries
by rotating the edge data through = radians and then reclipping against the same two boundaries.
This second technique is the one that is used here and is essentially the same as performing the
clipping operations for two half plane rotational sweeps.

Another approach to the clipping problem involves clipping against both constant 6 wedge
boundaries simultaneously. This is not as straightforward as the rectangular case because of the
wrap-around nature of angular data. (Angles greater than twice & are not possible.) In the
rectangular case, an indication would be given as to whether an edge's endpoints are beyond one
of the two boundaries and which of the two boundaries it is beyond. In the case of cylindrical data,
it is not readily apparent whether the endpoint is beyond the 8 = 0 or 8 = 6,ax Wedge boundary.
This effect can be counteracted by also considering the midpoint of each edge. Figure 5 shows all
the possible arrangements of endpoints and midpoints for the case when the first endpoint as
represented by pl has a @ value greater than the second endpoint which is represented by p3
Solution of the problem when the role of the endpoints is reversed follows by symmetry.

If either of these techniques is used, a method is still needed to calculate the intersection point with
the wedge boundary. By parameterizing the edge with endpoints pJ and p2 the following vector
formulation is obtained:

[p1+m{p2-p1)]=[labc];0sm<1

For the case of finding the intersection point with the 8 = 0 wedge boundary the coordinate b
becomes zero. By introducing the vector d= [0 1 0] and by taking the vector dot product of d with
both sides of the above equation the following condition results [Selby, p. 540]:

prd+ m(pyd-prd)=0

Solving for m yields:
__prd
m=
p1-d-pzd
9ma)n{
pl
p2
p3
0
(a) Use entire edge
emax
pl
1
I’ P2
0
p2 lp3

(c)Clipp3endto8=0

emax
pl pl
p2 p2
p3 p3

(b) Clip p1 end to 6max

p3Ip2 lp3

p3

(d) if 61 > 62 and 62 > 03 ignore
otherwise clip p1 end to 6max
clipp3endto6=0

Figure 5. The possible clipping arrangements for a straight line edge intersecting a cylindrical

wedge.

Solving for the intersection point with the 8 = 84, wedge boundary is straightforward using the
same basic approach and a simple trick. If the coordinates of the edge are rotated about the z-axis
by negative 8mqy radians, then the y-coordinate of the intersection point (b above) becomes zero.

To do this, the vector d needs to be changed to d= [-5in(8max) cos(6max) 0] and the above
calculations repeated [Hearn, pp. 108-109].

Since it is already known that the edge under study intersects the wedge boundary (due to previous
calculations), the above solution holds unless p; and p2 are identical.

3.2.1.4 Closing Faces Against the Rotational Sweep Wedge

In the previous section, two different methods are presented which demonstrate how an edge can
be clipped against the constant boundaries of the sweep wedge. In the first method, the edges are
clipped against each planar boundary separately. Closure of each face along the clipping plane is
routine provided that the edges bounding the face are processed in an orderly fashion [Hearn, pp.

134-138].
Qe e
max max
(a) (b)
emax emax
© @

Figure 6. The results of clipping and closing a polygonal face against a cylindrical wedge. The
heaviest lines represent the final shape of the face.

For the second method where clipping against both boundaries is done simultaneously, the results
of clipping and the necessary closure are not as clear cut. Figure 6 shows the four types of closure
possible for the positive radius wedge. In Figure 6a and 6b the method of closure is identical to
that used when clipping a face against a single plane. Figure 6¢c shows a polygon which is closed

11

against both faces and Figure 6d depicts a polygon that leaves from one of the wedge boundaries
and enters via the other. In this case, the resultant closure requires the addition of two edges

instead of the more typical one.

Unlike the normal closure case, the clipping algorithm does not supply all the information
necessary to construct the two new edges of Figure 6d. The data missing is the value of the z or
height, h, of the face where the radius is zero. According to calculus, a plane can be defined by a
normal vector to the plane and a point on the plane by the function:

@-po)yn=0

where pg is the given point on the plane and » is the normal to the plane. Knowing that the radius
must be zero, and hence both x and y must be zero, reduces the formula to:

[<0 0 A> - <xg yg zp>][nx nynz] =0

and
L 4 ny
h—xonz+ygnz+zo

the clipping and closure algorithms guarantee that the face crosses the radius-equals-zero point, the
value of nz must be nonzero.

3.2.2 Discovered Inadequacies of the Current Solution

At first glance it would appear that all the necessary elements are now in place to generate the
complete rotational sweep shadow for a group of objects and an arbitrary rotational reference.
Unfortunately, this is not the case. There are two main problems which need to be addressed. The
first is caused by values of the rotation angle greater than &t radians. The reason that this is a
problem is that when the sweep plane is rotated greater than & radians it becomes possible for the
same points on an object to intersect both the positive and negative radius sides of the sweep plane.

The second problem is illustrated in Figure 7. Consider the planar face represented by the plane x =
4 as shown in Figure 7a. If the face is bounded at height of z = +2 and the algorithms presented
above are used to sweep from 6 to 6; the resulting plot in the rh-plane will result as shown in
Figure 7b. The reason that the left side of the figure is left open is due to the manner in which the
wireframe is swept. As the z = 2 edge is swept, the & value of the edge is constant and the r value

starts at some value greater than 4 (= V(ygp*yp + 4*4), decreases to 4 at y = 0 and then increases
again as @reaches 6;. When one of the edges at the constant 6 boundaries is determined (via
clipping and closure) a constant radius edge is generated in the rh-plane. Similar results occur at the
z = -2 and 6 boundaries respectively. For the case when y(and y; are the same angular distance
from the x-axis, the open ended wireframe of Figure 7b will be generated. This is called the
minimal radius edge problem and is solved below.

12

> r
Y o
x=4
(a) A planar face atx =4 (b) The results of clipping and closing
the wireframe of part (a).

Figure 7. An illustration of the minimal radius edge problem.

3.2.2.1 Dealing with Rotational Angles Greater Than =

There are two ways of dealing with rotational angles greater than . If the first clipping algorithm
is used (clipping versus the boundaries separately) then some modifications need to made in the
way that edges are clipped by the planes representing the wedge boundaries. Two potential types
of modifications would work in this case. The first would be to institute a clip against a half-plane
using the origin as the boundary of the half-plane and then clipping against the two half-planes
which represent the wedge boundaries. The second technique would involve clipping against the
two full-planes representing the extended wedge boundaries and performing a union of the
resulting edges. Neither of these options is very desirable, in the first clipping against a half-plane
is not well defined and in the second the union operation can be computationally expensive.

When simultaneous clipping against both the wedge boundaries is used, the options for solving
this problem are not straightforward. The added difficulty here is that it is now possible for an edge
to have both end-points in the unclipped zone and yet still have a portion of itself in the clipped
zone. When this is the case, two possible configurations are possible. The first is that the edge
should be closed via the radius-equals-zero point; a problem that is already solved. The second
configuration describes the situation when the clipped wedge cuts the object into two sections thus
causing the face under study to become two faces. In this case, each face with this configuration
would have to be clipped and closed twice, once for each side.

If it is only important to know the boundaries of the sweep shadow and extra lines internal to the
shadow itself are not important or are being removed in a later step, then the following technique
can be used for both independent and simultaneous clipping operations. Since it is demonstrated in
previous sections how to clip and close when the rotation angle is less than or equal to =, this
problem can be divided into sweeps with angles less than or equal to 7. The most obvious choice
of divisions is for one sweep with an angle of & and the other with a sweep of @pqx minus 7. This
requires two extra passes of each face (for a total of four) through the clipping and closure
routines, but it will determine the full boundary of the sweep shadow. One important consideration

13

is to keep track of whether the clipped edges have a positive or negative radius since the second
sweep wedge begins at angle & and not at angle zero.

3.2.2.2 Solving the Minimal Radius Edge Problem

The problem illustrated in Figure 7 is not as simple to solve as that of rotation angles greater than
. The problem stems from the fact that the wireframe of an object's faces does not necessarily
define the radial boundaries of those faces. By inspection it can be seen that the maximum radius of
any point on a plane is infinite, therefore, the wireframe boundary of a face on that plane will
define the maximum radii of the points on that face. The wireframe, though, does not always
specify the minimal radii points on that face and this is the situation depicted in Figure 7. Thus, itis
necessary to locate and sweep the minimal radius boundary for each face.

A planar surface represented in cylindrical coordinates is not simply defined. A brief look at the
mathematics, though, reveals that the problem is not difficult to solve. Start with the basic equation

for a plane.
Ax+By+Cz=D
By fixing the value of z and solving for the line on the plane defined by this fixed z yields:
A D-C:

Use this to compute the radius squared, and take the partial derivative of this square with respect to
x and set it equal to zero. This describes the point on that line where the radius is minimized.

r2=x2+y2 =x2 +(%x+%€z)2

2 2
& 2l +:7Z)-2§2(D-Cz)=0

A
x=m(D-CZ)

By allowing z to vary, a line representing the minimum radius edge of the plane is defined. This
line can then be treated like any other edge on the face.

There are a few special cases for the proceeding calculations. For the case when C = 0, the values
for x and y are constant throughout the plane. When both A = B = 0 this is the case where z =D
and the plane has a minimal radius of zero which is captured by the closure algorithm and can be
ignored. For the final special case when B = 0, the normal of the plane of the face has no y
component and the value of zero for y can be used.

Now that the minimum radius line for the plane representing the face is defined some further
processing needs to be performed. First, it must be determined whether the line even intersects the
area of the face. This is just the Polygon Intersected Edges problem as defined by Preparata and
Shamos [Prep, p. 313]. If the line does intersect the polygon defining the face then extra edges
must be added where appropriate. (This is one edge for a convex polygon and possibly more for a
non-convex polygon.)

14

A solution to this problem is to extend the single-shot polygon inclusion test so that all the desired
edges are obtained [Prep, pp. 41-43]. The basic idea of the single-shot polygon inclusion test is to
determine whether a point is located inside a polygon by drawing a ray from that point to infinity
and counting the number of intersections with the edges of the polygon. An odd number of
intersections means the point is inside and an even number means the point is outside. The
minimum radius line is used to define the direction of this ray. Rays are drawn in both directions
away from the point and by sorting all the intersection points, a set of minimal radius edges can be
determined by alternately labeling each intersection point with the rays as inside or outside the

polygon defining the face.

There are a few non-trivial problems associated with this approach which are only briefly
mentioned by Preparata and Shamos. These involve degenerate intersections between the line and
the edges of the polygon. The first arises when the line intersects the polygon at a vertex. Not only
does this intersection point intersect two edges, it is also quite possible that the line is only grazing
the polygon and does not enter or leave it at that point. Whether this type of intersection represents
a true intersection with the polygon can be determined by looking at the sign of the sine of the
angle between the line and the edges of the polygon when both of the edges are directed in the
same direction about the polygon. This information is readily determined by using the vector cross

product.

The second problem arises when the line and an edge overlap each other. This, though, is just an
extension of the vertex intersection problem. By looking at the edges on both ends of the
overlapping edge it can be determined whether this type of intersection defines a crossing point or

not.

3.2.3 The Complete Solution

In Figure 3, a simplified algorithm is provided which attempts to solve the rotational sweep
shadow problem. In previous sections, this algorithm is shown to be mostly correct, but lacks
certain features which leave the problem incompletely solved. Figure 8 depicts an enhanced version
of the algorithm in Figure 3 with added steps for solving the problems associated with large sweep
angles and minimal radius edges.

Even though the solution to this problem requires up to four passes through the clipping and
closure routines for each wedge, the time complexity is still linear with respect to the number of
edges in the obstacles. The only portion of the solution which is not linear is the sorting of
intersection points found in the minimal radius edge solution. In the worst case this sorting can be
done in nlogn time, but it is more likely that only zero, two, or four points need be sorted for a face
with most faces possessing zero or two intersections for reasonable objects.

3.2.4 Results

A rotational sweep shadow generator using the techniques of simultaneous clipping as described
above has been implemented in C on a Sun-3 workstation. It is incorporated within a robotic
assembly planning system and is used to analyze mating trajectories, grasp sites, and grasp types
for the case of simple rotations. Figure 9 shows the results of this algorithm as it encounters a
cube. In both the cases, the extra internal lines of the shadow are left to aid in visualization and
because their presence does not affect the operation and results of the larger system.

Figure 9a shows the cube when the center of the rotation lies within the cube. The rotation angle is
2 radians and the apparent extra set of lines internal to the right and left sides of the figure result
from the minimal radius edge calculations. Figure 9b shows then same cube when the center of the
rotation lies outside of the cube. The triangular patch to the right shows the extra face caused by

15

procedure GENERATE_COMPLETE_ROTATIONAL_SWEEP_SHADOW;
specify and define the cylindrical coordinate system for the sweep;
for each object in the environment;
for each face in the environment;
find the height of the face at r=0;
find the minimal radius edges;
for each minimal radius edge;
if Bmax > © then;
sweep in two parts;
else;
sweep in one part;
end-if;
for each edge on the face;
convert the edge to the sweep coordinate system;
if Omax > & then;
for each edge on the face;
sweep for O < and clip as necessary;
close with the previous edge if necessary;
close the face between the initial and final vertices;
reduce Omax by n;
rotate all the data & radians;
end-if;
for each edge on the face;
sweep the edge and clip as necessary;
close with the previous edge if necessary;
close the face between the initial and final vertices;
end-procedure;
Figure 8. A complete algorithm for solving the rotational sweep shadow problem.
clipping and closure at one of the wedge boundaries. The two vertical lines which are tangent to
two of the curved edges are each minimal radius edges. In the case of the right-most one, its
presence in necessary.

4.0 Analyzing the Sweep Shadow
Since volume sweeping is equivalent to sweeping areas within a plane, it is necessary to determine

how much cross-sectional area remains for the gripper and to employ a metric which characterizes
this area. Because this value depends heavily on the actual location of the grasp sites, the grasp

16

sites need to be known at this time. A list of grasp sites and types can be provided or some type of
grasp planner may be used.

(a) (b)

Figure 9. The rotational sweep shadow of a cube. (a) With the center of rotation inside the cube.
(b) With the center of rotation outside of the cube.

Once the grasp sites are known, their locations are mapped to the sweep plane. Based on their
type, (e.g., one-fingered) the unswept areas in the plane are scanned. Figure 10 shows the area
which must be considered for most of the grasp sites and types, since the obstructions in all
directions around the grasp site may be of importance. In the case where it is known that the
gripper extends in a direction perpendicular to that of the motion (e.g., 2 two-fingered grasp from
above during a horizontal motion) only half of the unswept plane needs to be considered.

DISTANCE TO
OBSTACLES

OBJECT

OBSTACLES

Figure 10. Use of distance to the nearest obstacle as a measure of a gripper's envelope.

Once the appropriate unswept areas in the plane have been determined, it is necessary to analyze
them and to compute the value of a metric on their suitability. A first approach might to find the
largest rectangle which will fit in the unswept area, while still maintaining a reasonable aspect ratio.
Doing this is not completely straight forward because the rectangle needs to be roughly centered
about the grasp site's projection onto the plane. It is also necessary to incorporate a polygon fitting
algorithm to find the valid positions and sizes of the gripper rectangle.

This relatively complex procedure can be replaced by a simpler procedure which effectively
approximates the unswept area. By measuring the euclidean distance from the center of the grasp

17

site to the nearest obstruction, an inscribing circular (or semicircular) area is defined within the
unswept volume. By definition, this area is completely free of obstacles and its radius is an
accurate measure of its size. Figure 11a depicts an example of the calculation of this metric. While
this method does not always rate the unswept area as well as a well-fit rectangle might, as shown
in Figure 11b, the inscribed circular area gives a conservative estimate of the cross-sectional area
available for the gripper. This technique is also more computationally efficient than one which fits a
rectangle into the unswept area.

GRIPPER'S
ENVELOPE

GRIPPER'S
ENVELOPE

OBJECT OBJECT

(b)

Figure 11. Difference between (a) the inscribed circle and (b) the fit rectangle measures.

5.0 The Complete Plane Sweep Algorithm

A step by step synthesis of an algorithm to solve the gripper envelope problem has been presented.
A pseudocode description of the algorithm is provided as Figure 12.

The complexity of each of the components in the algorithm is presented in Table 1.

Table 1 - Complexities for the Plane Sweep Algorithm

Component Complexity
Placement of Vertices OoN)
Extraction of Vertices o)
Plane Sweep Along a Strz;ight Line O(N)
Plane Sweep Through a Simple Rotation O(N)
Halving of a Plane O(N)
Finding Radius of Largest Inscribed Circle OMN)
Complete Algorithm OM*N*L)

where N is the number of vertices in the obstructing objects,
M is the number of trajectories, and
L is the number of grasp sites per trajectory.

18

procedure ANALYZE_GRIPPER_ENVELOPE; |
place the vertices of all the obstacles in 3-D space;
extract the vertices of the obstacles to be considered;
for each mating trajectory;
for each trajectory segment;
if segment type is straight line segment then;
for each edge in the obstacles;
project and clip the edge rectangularly;
else;
for each edge in the obstacles;
project and clip the edge cylindrically;
end-if;
for each possible grasp site;
if full plane type then;
find the distance to the nearest obstacle;
else;
discard half the plane;
find the distance to the nearest obstacle;
end-if;
record the distance found above;
end-procedure;

Figure 12. Pseudocode description of the Plane Sweep algorithm.
6.0 Conclusion

The plane sweep algorithm has been implemented in C on a Sun-3 workstation. The appendices
provide some of the results obtained from the algorithm for the class of objects restricted to those
with planar surfaces only and the mating trajectories restricted to sequences of straight line
segments and simple rotations.

These test results demonstrate that the plane sweep algorithm's solution to the gripper envelope
problem provides a satisfactory rating of various assembly sequences. Its ability to analyze and
approximately measure the amount of volume available for an unspecified gripper, given different
mating trajectories, grasp sites and gripper types, makes it useful as an aid in rating and ranking
assembly sequences.

7.0 Future Research

There are many areas in which the plane sweep algorithm can be enhanced. More complicated
trajectories can be allowed, such as helical straight line translations or even appropriately curved
trajectories. It is only necessary to properly parameterize the environment with respect to the
direction of motion. More complex shapes can also be allowed in the form of cylindrical or

19

spherical subvolumes. It is also be possible to place some form of cost function on points in the
unswept areas, to give an indication of a gripper angled more in one direction than another. Other
assembly factors can be integrated with this algorithm within the assembly sequence planner to
give a better overall picture as to which assembly sequence may be the best one available.

Research can be performed on other possible applications of an algorithm of this type. Some of the
ideas that come to mind are: applications in obstacle avoidance, motion planning, and determination

of the amount of tracking error allowable during an actual motion.

Figure 13 depicts a mobile robot path planning problem involving the choice of paths either around
or through a set of obstacles. The plane sweep algorithm is useful in determining the size of the
obstacle free area about the robot. By combining the straight line trajectories with the simple
rotations at the trajectory vertices, a very accurate indication of the free space is determined. The
plane sweep algorithm, however, still predicts that the best trajectory is the one avoiding the
obstacles since it is safer. To take into account the effects of trajectory length, a heuristic function
must be implemented which balances the safety issues inherent in the gripper envelope metric with

the mating time issues implied by the trajectory length.

Acknowledgement

This work was supported in part through NASA grant NAGW-1333.
FINISH

d Ty

I/
!
~

4
@
START

Figure 13. Example test case for ranking trajectories. A maze navigation problem with multiple
trajectories.

20

BIBLIOGRAPHY

[Blinn]

[De Fazio87]

[De Fazio88]

[Foley]

[Hearn]

[Hoffman]

[Homem86]

[HomemS§8§]

[Ko]

[Mirolo]

[Prep]

[Selby]

[Turner]

[Wang]

[Welch]

Blinn, J. F., "Optimal Tubes," IEEE Computer Graphics and Applications,
September 1989, pp. 8-13.

De Fazio, T. L. and Whitney, D. E., "Simplified Generation of all Mechanical
Assembly Sequences,” IEEE Journal of Robotics and Automation, December,
1987, pp. 640-658.

De Fazio, T. L. and Whitney, D. E., "Correction to 'Simplified Generation of
all Mechanical Assembly Sequences'," IEEE Journal of Robotics and
Automation, December, 1988, pp. 705-708.

Foley, T. A., et al., "Visualizing Functions Over a Sphere," IEEE Computer
Graphics and Applications, January, 1990, pp. 32-41.

Hearn, D. S. and Baker, M. P., Computer Graphics, Prentice Hall, Englewood
Cliffs, NJ, 1986.

Hoffman, K. and Kunze, R., Linear Algebra, Prentice Hall, Englewood Cliffs,
NJ, 1971.

Homem de Mello, L. S. and Sanderson, A. C., "AND/OR Graph
Representation of Assembly Plans," AAAJ -86 Proceedings of the Fifth National
Conference on Artificial Intelligence, 1986, pp. 1113-1119.

Homem de Mello, L. S. and Sanderson, A. C., "Task Sequence Planning for
Assembly,” IMACS World Congress ‘88 on Scientific Computation, July

1988.

Ko, H. and Lee, K., "Automated Assembling Procedure Generation from
Mating Conditions," Computer Aided Design, January-February, 1987, pp. 3-
10.

Mirolo, C. and Pagello, E., "A Solid Modeling System for Robot Action
Planning," IEEE Computer Graphics and Applications, January, 1989, pp. 55-
69.

Preparata, F. P. and Shamos, M. L, Computational Geometry an Introduction,
Springer-Verlag, New York, NY, 1985.

Selby, S. M., ed., Standard Mathematical Tables, The Chemical Rubber Co.,
Cleveland, OH, 19th. Ed., 1971.

Turner, J. E., "Accurate Solid Modeling Using Polyhedral Approximations,”
IEEE Computer Graphics and Applications, May, 1988, pp. 14-28.

Wang, W. P. and Wang, K. K., "Geometric Modeling for Swept Volume of
Moving Solids," IEEE Computer Graphics and Applications, December, 1986,

pp. 8-17.

Welch, Henry L., Robot Independent Assembly Sequence Planning, PhD.
Thesis, Rensselaer Polytechnic Institute, August 1990.

21

Appendix A
Sample Test Cases

Case 1: The 2 D-Cell Flashlight

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate grasp types.

Associated Files: ~/casel.dat
~fcasel.trj

1-FINGER 2-FINGER
GRASP
GRASP
= . SITES
BATTERY PARTIAL
FLASHLIGHT
ASSEMBLY
(a) (b) (c)

Case 1. (a) Stylized two-cell flashlight with one battery installed.Grasp sites available for (b)
one-fingered gripper and (c) two-fingered gripper.

49

RGP Tl i b b i e e b I Al

L

jotdung .
16 K
Jus/yaamyzasn/ R
248 pI (-

8¢ tduoq

xEA-“
whid- LQ— | e~ {- sdzuns | dwnpuesuss, ps Sey(e (-
<< 370SNOJ >>

I , “ ! | ! I } | _ ! I | _

casel.dat
2
24 17
0.0 0.0
0.0 0.0
0.5 15
15 05
15 0.5
05 -1.5
0.5 -15
-1.5 0.5
-15 05
05 15
0.5 15
15 05
15 =05
0.5 -15
-0.5 -15
-15 0.5
-1.5 05
-0.5 15
0.833 25
25 0.833
25 —0.833
0.833 =25
—0.833 =25
=25 -0.833
=25 0.833
-0.833 25
8 0
0.0
4 0
0.707
4 1
1.0
4 2
0.707
4 3
0.0
4 4
—0.707
4 5
-1.0
4 6
-0.707
4 7
00
4 8
0515
4 9
0.707
4 10
0515
4 11
0.0
4 12
-0.515
4 13
—0.707
4 14
—0.515
4 15
0.0
16 10
0.0 0.0

Nov 15 15:30 1989

Plane Sweep Test Cases

10
11
12
13

14

casel.dat

Page 1 of casel.dat

casel.dat
0.0 0.0
0475 1.425
1425 0475
1425 ~0.475
0475 ~1.425
—0.475 -1.425
-1.425 —0.475
-1.425 0.475
-0.475 1.425
0475 1.425
1.425 0475
1.425 -0.475
0475 -1.425
0475 -1.425
-1.425 -0.475
-1.425 0475
0475 1.425
8 0

00
4 0

0.707
4 1

1.0
4 2

0.707
4 3

0.0
4 4

-0.707
4 5

-1.0
4 6

0,707
4 7

0.0
8 8

0.0

Nov 15 15:30 1989

10
11
12
13
14
15
11

12

Plane Sweep Test Cases

13

14

15

casel.dat

Page 2 of casel .dat

——

casel.trj
10

1

0.0 0.0
0.0 0.0
-1.0 0.0
0.0 -1.0
6.5

3

0 1425
0 -1.425
0 0.0

Oct 3 16:26 1989

Plane Sweep Test Cases

5.75
-1.0
0.0
0.0
0.0

0.0
0.0"-F

casel.trj

Page 1 of casel.trj

Case2: Peg-in-hole Assembly with Bounding Wall

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate grasp locations.

Associated Files: ~[case2.dat
~[case2.trj
~[case2.gsp

(@) (d)

, ;

GRASIP SITES
(b) (®)

GRASP SITES

(c))

Case 2. (a) Peg in hole with side wall obstacle assembly. (b) and (c) The gripper envelope for
a hex head bolt in place of the peg. (d) The gripper envelope for a socket attachment.
(e) and (f) The effects of wrench placement which is detectable with a rotational

sweep.

T
1
(2]
8
T
e
J

jep-a|2443 dsb-zase

aJouw | ®nje- sd

00T3A 3L Auslas

aJow

$}4383UNs /1S} 4383 /sawel /uay | em/awoy/ 133}
(94s/ove} yIam/away/ pa)
(o4s/yagamysawoy/ pa)

4

E E
(5 T a 13
[A Z
s/yale
{2 uol
o EIEE i ; . : ol 1R o 2 R P o
(31n0) (uea1ag 314) (dung) (suoiydg) (wooz) (me.pay) x (31n0) (usaJas 114) (dung) (suoyidn) (wooz) (me.pay) M
5 T ¥ . 22 4dy uns .
3 A X : x : = :
- -. H L] -A 1 n
L1105 P S : N » ps ¢-[Z

Planc Sweep Test Cases case2.dat

case2.dat

o ~t o~
L g] o [} - ™ (2] <t " — — w — o 22} (o] —
— — (=] — ~ o0 [=,%) —
- | NC WO OB AN Mt it Dt O OO ™ O N {~OoOVvVOoOWNno

v o Al —

OO NN OOmmNNOOO 0O I~ _60708090.&010”4”0.0”1 Vet | 1 1l TNANONN—OY | OO ™
™~ NN L] - - o~ o - -t — -
Yocaaaacaal Y Y Y MM M MoccocovoeTroaTmoet~a~Reod T80 vooTme T le—lTOo0COOM~aO
Q v -t - o

NANCOCOCOCONNYTYOONNT vttt T 0 L'~ b4 b4 b4 ~t <t - - - - WD | | vt | | -t <r b4

Page 1 of case2.dat

Apr 22 1302 1990

case2.dat

4 1
-1

4 4
0

Apr 22 13:02 1990

O L O ta

O M

Plane Sweep Test Cases

case2.dat

Page 2 of case2.dat

case2.gsp

-50-50"1"
05057
0-50-5 "3

Apr 22 13:24 1990

Plane Sweep Test Cases

case2.gsp

Page 1 of case2.gsp

Plane Sweep Test Cases case2.trj

case2.trj

-0 ©
wv o S
O i
oo I Moo
-
O~O lOonNnToOoOO

Page 1 of case2.trj

Apr 22 13:21 1990

Case 3: Peg in a Pinched Box

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate grasp locations.

Associated Files: ~/case3.dat
~[case3.trj

GRASP SITES GRASP SITES

Case 3. The results of applying the plane sweep to the objects of Figure 4. (a) The gripper
envelope detected for the top-bottom grasp sites and (b) The gripper envelope detected
for the side grasp sites.

88000S'B :si £ dseub ‘g juawbas uoy sduelsip ayj @ o6
000085°0 :st g dsedb ‘g juawbas uoy soueysip ey) 1dunp gdunp da
0088081 :st | dsedb ‘g juawbas uoy soue}sip ayj 1dunp gdunp do
80080081 :sSi g dseub ‘g juswbas uoy eoueysip ay] @ b
f43-gasea :ojuy daams Bujuiejuos a1 8y} 40 aweu ay} Lma:w_ 1BP a[2J}3 SIEWA
JeP EBSBI :8yt) BIERP QY] 8y} 40 aweu ey} Jajugf WEu G- B8
: 188} (- . ol
[l -caapq soewd ¢-§ “C. 5”85 BR
E £
4 T g 1
: Z 4
1

I o

s o ¢ S i E Py e L
uaaJag 314) (dung) (suoiydp) {wooz)

(me.pay)

301 ac,:m 1

4

YL N CEENE T (dung) (suoy3dp) (wooz} (meapay)
. _3oidung

T a

2

Fay mapa yed (-
2 b ¢t

RS E
m:.Eou
\ ps ¢-[°
8 b ¢[2
£&EIIDSNDT 33!

<R -

Plane Sweep Test Cases case3.dat

case3.dat

—
| OO mO | OO

27 26

2 28 27
13 29 28
3 14 30 29
14 15 31 30
15 0 16 31

22

23

24
6 25

7 16

0
1
1

CO0COOOOCCOOOOOO OO vt ri vt vt vt vt vt 7h 7=t vt vt vt 7t vt vt vt = N N VDO 00 Oh

0
6
6
5
5
4
4
5
5
1
1
2
2
1
1
o
0
6
6
5
5
4
4
5
5
1
1
2
2
1
1
0
0
1
2
3
4
5
6
7
8
9
10
11
12
1

00005544221122445500554422112244554444444444444444

Page 1 of case3.dat

Apr 22 14:49 1990

case3.dat Plane Sweep Test Cases case3.dat

4 0 1 2 3
0 0 -1

4 0 4 7 3
0 -1 0

4 3 7 6 2
1 0 0

4 2 6 5 1
0 1 0

4 1 5 4 0
-1 0 0

4 4 5 6 7
0 0 1

Apr 22 14:49 1990 Page 2 of case3.dat

casel.trj

— D et

COQOANO | OWO

Apr 22 14:55 1990

Planc Sweep Test Cases

case3.trj

Page 1 of case3.trj

Case 4: Row of Indicator Lamps

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate grasp locations and assembly orders.

Associated Files: ~[cased.dat
~[cased.trj

OOO0OO0OOO

Case 4. The row of lamps assembly. The presence of any lamps constrains the gripper space
of the rest.

| | | | A] l] i [T
=

t g dseub ‘g jusubas Jop BOUEYSLP BY)

1 2 dseub ‘g juswdas Joy 8Jue}lsip 8Yjl

1 dsedb ‘g juswbes Joj 8OUB}SLP BYL

@ppgad’1 :si g dseub ‘g juswbes Joj 8oue}sip 8yl

(J}-pases :ojui dsams Buiuiejuod 8|}j 8y} 3O auweu 8y} (Rl

jep° p@SED :8{L} BIEP QY BY} O BweU By}

1s

fa3-posed sae

4

NN
oD
/\/\/'\/\

4

€ :8bueyo yse g'y oses|?@

xg)ioLd
081

fll;unoaoe
00z 8y}

upL eyl
| J48moy

ed ‘seA
ll3ep BuL

gl40 3841
yubooad 154
a8q ued g 7
| <2- aul

o1 S-

a (useuos 3t4) (dung) (suotydg) (wooz) (meapay)

3o dung

ARt Wasacad i

4
(usauds 314} (duwnq) (suoi1dn) (wooz) (metpay)

m - B
I_u <

3 L]
Lm\;u,ms\mso;\mm” <¢ 310SNBD D>

Plane Sweep Test Cases case4.dat

case4.dat

120
2 21
3 22

JIQ8K
QW O~

NANANANAANANNN

4 10 11 31 30
4 11 8 28 31

4 12 13 33 32
4 13 14 34 33
4 14 15 35 34
4 15 12 32 35
4 16 17 37 36
4 17 18 38 37
4 18 19 39 38

v 400009911223344556677oo8009911223344556677884444444444

Page 1 of cased.dat

Apr 22 15:14 1990

cased4.dat

Planc Sweep Test Cases

v—
N O VWONOTO O~

1

I~ OO0 ~nOoWno

0

| D00 N —mANO —

cased4.dat
4 19 16 36 39

_l .
NI ROV OVIOTOO—

vy (o N Ne Kol —

Yo) fNNNN~OT | OO nOND
V) — — —
OOt | | | |OOO0OOCA—~NO—~ | 4O

511)
WO | et | | e < < < <

Page 2 of cased.dat

Apr 22 15:14 1990

Plane Sweep Test Cases cased4.dat

cased.dat

CQOVWONOIFTOW—

—
IicMOVOVwmnono

-y
CN=NO = | O

—

N | OV ONO T OO —~

aNa —
MTer T T T NNNN—~OY [N0~ nono
V) — —— — —
WO |~ | |t | OOO0OO0N—~NO— | O
511 o
VO | | = | |- & < < < <

Page 3 of cased.dat

Apr 22 15:14 1990

-

Planc Sweep Test Cases cased.trj

cased.trj

oM (=]

55153
00 -1

-100
0-10

15

050

0-50
005

00 -5

55153
00 -1

-100
0-10

(=]
oO~O
—
| mQO O

(=]
QOO O~NO

Page 1 of cased.trj

Apr 22 15:25 1990

Case 5: Test of Assembly Order

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate assembly orders.

Associated Files: ~/case5.dat
~[caseSa.trj
~fcaseSb.uj
/
Case S. Example test case for ranking assembly operation orderings. A small obstacle in a

semi-cluttered environment with a nearby sidewall.

} | ! | 1] |] |
Al
L g dsedb ‘7 juswbas Joj BOUEBISLP BYY

booBesB°1 -

s

800008° T :st g dseub ‘1 juawbas Joj aouejsip ayy jusubas Joj 3duR3IS|P
s
s

poepasS @ :s} £ dsedd H

T
g :s dseub uawbas 4o} aouejs
000005 "1 :si 1 dseb ‘7 jusuwbes Joj saue}sip ayy mmwwmww "m“ m dseuB % w:m.&mm ..ow momem"m ayj
88ABRS 1 st B dsetb ‘7 jusubes Joj saue}sip syl 6P0BER T :5) @ dsedB ‘T juowBas Joj asuesip oyl [

aje}sin Bitl
hd -~
B8l »
23 9 ‘
e} d !

o o
£ c
-
ORI RS IWAL, - 0

a2 QLT e vy

T_:o_ (uaauag ﬁ;“; [dung]) (suoiydg) (woaz) [meupay)

g Tt s 2 8005 i b i et Li525

fh;» (dun ,mm.co_«ma (wooz] (meapay]

, q)
W .uo._n_c:m j3oi{dung
0-3s83} 3+ {8AUBY 0" |8AUB yreyep [J} BGaseds 3|1 48N S o T T m.._,A«
0" Jutw y-|anua jepragnd JeprGased gy’ |aAuay 2.5 /421 aM/aWoy/ <-
248

686

T 103 80 TE:2T S 390 PUL :T# (WL-SYYH) £°8° b @sea|ay sQuns
npa*jdat{Ba' |08 WOUy 1616211 €2 Jdy uoW :uibo| 3seq

saew upboa (-
248 /Ya|am/awoy /
a| tdwog

g

. T;:;-a"c

3Js o | 8m/ewoy / ® . P, \

aus -3 - b ps <- |71
haldeuy Sl B fF 5. 1 : << 30SNDT: DD

Plane Sweep Test Cases caseS.dat

case5.dat

~r

™

—

FOVOWVNO OO —~

~—

~MOOOCOOANNNNOY I FOW~NONDS

VOO OTANNODONNOCCQQOLON~ANOD—~ | O

WOOOOoOWVMWNoonn<

—

¥ & ¢ < @«

™~

-

O WVWOWVO OO —

—

FOOCOoOOONANNN—~NOY I POV~ NONO

—

VOO ANOONNOCOOCOON N NDO —~ | O

WOOOoOoWVMNnNoonng

A R A A

OO OO QO rmirt vt =t O

VOO —~rOO0m~000C

VOO COr v OO rmi ot <t

Page 1 of caseS.dat

Apr 23 10:56 1990

Planc Sweep Test Cases case5.dat

case5.dat

QVWOWNOTOO~

—
| MO O~ OoONO

—
SN NO e~ | O

—
N I POV OoOVNOTO 0~

—
—~O 000 ONNANN~OT | MOV NONGO

et
OO OO OO0 MN~NO~ | TO

WOVMOONNQONANYT <t A b4 - -

Page 2 of caseS.dat

Apr 23 10:56 1990

caseSa.trj
4
0123
2

0
4535 4
00 -1
100
0-10
35

4
050
0-50
0035
00-5
0

45 35 4
00 -1
-100
0-10
25

4
050
0-50
005
00-5

Apr 23 10:59 1990

Plane Sweep Test Cases

caseSa.trj

Page 1 of caseSa.trj

caseSb.trj

[
[

,..
(9. oLh
i—lcl w
oW
E-S

LA
ltah o
o

[N

o COCOOHAWO | OO NOW
SOl s i

45 35 4

| ©
—
o
ol
O e

Apr 23 11:01 1990

Plane Sweep Test Cases

caseSb.trj

Page 1 of caseSb.trj

Case 6: Rotating Bolt Head

This test case is used to demonstrate the plane sweep algorithm's ability to choose more
appropriate rotational grasp locations.

Associated Files: ~[case6.dat
~[caseb.trj
~[case6.gsp

(a) (d)

GRASIP SI'E'ES
(b) (e)

¥

GRASP SITES

(c) ()

Case 6. (a) Peg in hole with side wall obstacle assembly. (b) and (c) The gripper envelope for
a hex head bolt in place of the peg. (d) The gripper envelope for a socket attachment.
(e) and (f) The effects of wrench placement which is detectable with a rotational
sweep.

) _ _) _ _ _ Il [
=L
98005.°8 St 1 dsedd ‘7 juswlas Joj 8duelsLp BYJ g 26
6B.bBp D :St @ dseub ‘] juswbes Joy adue}sip 8yy 1ep-8(24}3 SIEWR
8L V101 g 2B
9890SL 0 St 1 dseud ‘g jusuwbas Joy 8duelsip 8yl 1ep*a(2J} SIBWS
PPReSz°9 :St g dsedd ‘g juawbas uoy saueysip ayjy g a6
8§ W10l L 1ep 3|24} Ssoews
(u3-gased :ojui dosms BuiuiejuOd 8|1} BY} 40 Bweu a8y} Jsjuj g b
jep-g8sed i3l B}EP QYJ 8y} 0 8weu ay} J8juj 1 96
1883 (- 3ep-a|34}3 SoeWd
3JEp° 80410 SOBWA (- g BB
1Ep*8[JJ1D SOeWa (- g b
papEge°'1 St g dsedb ‘7 jusuwbas Joy Bouelstp ayj 8 6 ¢-
PEPBEB°1 :St ¢ dsedb ‘7 juawlss uony adueysip 8yl
pBAeRs @ :st | dsedb ‘1 a:mwmmm 40} 8Jue}sip 8yl g 26
-1 s 1-9
8-q « B-8 »
-
(1 “° O
(ind) (vesass 1t4) (Guna) (suotadn) (wooz) (mespay) (Gird) (usados 114) (Gung) (suotado) (wooz) (me-pay)
g 96 ¢- fn W i
g ab (| g —— *p8SEd ep- oS J” : . mw Mn
z 6 <- aﬂ ed mig- adi ¢- (5" T} LS

4r

€

Planc Sweep Test Cases case6.dat

case6.dat

—
e —
o
<t —
I - T T L T U T - S R R
—— [— ~ [[~} O -
NN OR OO N A O O O e O NI ~OVOoOnoO

- O — 00 AN NN
MO A NNO O~ NNOOO~ VO~~~ oo woaneo 2o 2ol 722 - N T T T TNNNN—~OT [00—
o~ oo N — — N m o — —— —
—ooNNNNN™ T LT Il OO O0O0OVOO | ~ON I NOT At O | O VOO |~ | i OO0 OMm—NS

0 NN o
NANOOCOCONANITILTOONNT < vl vt vt s <P o o -t <t < A g <t ~t+ <t - < 0O~ | |

Page 1 of case6.dat

Apr 22 15:38 1990

case6.dat Plane Sweep Test Cases case6.dat

4 1 5 4 0
-1 0 0

4 4 5 6 7
0 0 1

Apr 22 15:38 1990 Page 2 of caseb.dat

case6.gsp Planc Sweep Test Cases case6.gsp

~-866 —5 —.866 -5 "* 1-1"
-11 -025 1.075 " ™-F

Apr 22 16:22 1990 Page 1 of caseb.gsp

case6.trj Plane Sweep Test Cases

N O

CON = O

Apr 22 16:06 1990

case6.trj

Page 1 of caseb.trj

Sweep Shadows of a Cube

This test case is used to demonstrate the various kinds and types of sweep shadows that might be
generated by the plane sweep algorithm.

Associated Files: ~/cube.dat
~fcube.trj

Cube. The wire-frame of a cube used to test sweep shadow generation.

M0 csisnaizii i i b T

h10§ 314) (dung) (suorado) _EooN_ qu_uwm_

06 <~
2as/yaten/zasn/

M

I b <«
Das/yotas/zasn/
218 po <~ -}

[[1 ey nan

LR
s

/o

Mld- ady | e- [-

\sdzuns| dunpuseios <-

PRECEDING PALE BLAMK KOT FiLMED

AL g S
Neoaly .

""-.-11.1(2
e

Al

;!

D

okt

N\

N\

ul

—d

o

(724 @

= ~—

[mm | -

(&] =8
e

A (=3

N Q

BRI Sunplot

-> g4

(Redraw) (Zoom) (Options) (Dump) (Fit Screen) (Quit]

(Redraw) (Zoom) (Options) (Dump) (Fit Screen} (Quit)

-> more

4
p i L
V
g ,,,,, 1
-
0 - © o—-D -t v-!-cH W e-M T NW
DO~ — O N® “OND - O © V=T moamnmo
. . .

4 -t . .
A DA A D HAND AN D AN A A ND O | NOEHOOANDANANNOD

¥ e o b b i izt i B e b ai e &

cube.dat Plane Sweep Test Cases cube.dat

8 6 0.0 0.0 4.0 0.0 0.0 0.0

—0.25 —-0.25 0.25

-0.25 0.25 -0.25

-0.25 0.25 0.25
0.25 -0.25 -0.25
0.25 -0.25 0.25
0.25 0.25 -0.25
0.25 0.25 0.25

4

0 1 3 2

-1.0 0.0 0.0

4

4 5 7 6
1.0 0.0 0.0

4

0 2 6 4
0.0 0.0 -1.0

4

1 3 7 5
0.0 0.0 1.0

4

0 1 5 4
0.0 -1.0 0.0

4

2 3 7 6
0.0 1.0 0.0’-F

Aug 29 13:52 1989 Page 1 of cube.dat

Planc Sweep Test Cases cube.trj

cube.trj

-2

[o N]
-0 ™
- - N O

Page 1 of cube.trj

Apr 24 11,07 1990

cube.trj Planc Sweep Test Cases cube.trj

001

Apr 24 11:07 1990 Page 2 of cube.trj

Miscellaneous

This test case is used to generate the orthonormal views of most reasonably sized wire-frame
objects.

Associated Files: ~[view.t1j

view.trj Plane Sweep Test Cases view.trj

4
0123
3

0

-10 00
100
010
001
20

0

0
0-100
610
001
100
20

0

0

00 -10
001
100
010
20

0

Apr 23 10:04 1990 Page 1 of view.trj

Appendix B
OnLine User's Document

Gripper Envelope Detection Using Sweep
Shadows

Henry L. Welch

March 1992

Abstract

The gripper envelope analysis software derives a single metric for
approximating the volume available for a robot’s end-effector during
mating operations. The basic approach of the software is to generate
the straight line and rotational trajectory sweep shadows of obstacles
in the environment and to find the closest distance from grasp sites
to these shadows. The obstacles are limited to objects composed of
planar faces described using a surface modeling technique.

1 Introduction

The size of the gripper envelope is important in the domain of assembly
sequence planning. Its role is even more important if this planning is under-
taken without a priori knowledge of the size and shape of the robot perform-
ing the assembly. The distance metric supplied by this code is intended as a
single value which characterizes the size of the gripper envelope.

The underlying assumption in this solution to gripper envelope detection is
that during a motion there is no relative motion between the object being

grasped and the robot’s gripper. This means that for certain classes of motion
the cross-sectional area swept by the object to be mated (and hence the
robot’s gripper) is constant along the entire length of the trajectory. The
two simplest examples of these trajectories are straight line segments and
simple rotations.

Since the cross-sectional area is constant, the cross-sectional shape of the
gripper envelope can be found by sweeping a plane along the motions of the
object. As the plane encounters environmental obstacles, areas in the plane
are swept out which represent the sweep shadows of these obstacles. For the
cases of straight lines segments and simple rotations this is very similar to
projection in cartesian and cylindrical coordinates respectively. To account
for obstacles which may only be partially swept by the plane, clipping and
closure are also required.

Sweep parameters are obtained by converting each sweep trajectory to a
local cartesian coordinate system about the trajectory. Obstacle data is
then converted to this coordinate system and then processed appropriately.

The reported size of the gripper envelope then depends on the location of
the grasp site within the sweep plane. By inscibing the largest possible
circle centered about each grasp site, a single value can be used to describe
the approximate size of the gripper envelope. This value is calculated by
determining the closest sweep shadow point to the grasp site.

The object modeling used by this software is to describe an object as a
set of faces. FEach face is then defined as a directed list of vertices (which
describe the edges of the face) with closure between the last and first vertices
assumed. Normals for each surface are also required, but they are currently
not required to be directed outward.

NOTE: This software requires that all trajectories and grasp sites supplied
by the user do not intersect with any of the obstacles.

For more information on these algorithms and possible applications of the
gripper envelope see “Solution to the Gripper Envelope Problem Using a
Planar Sweep,” CIRSSE Report 111, Rensselaer Polytechnic Institute and
“Robot Independent Assembly Sequence Planning,” Ph.D. Thesis, Rensse-

2

laer Polytechnic Institute, August 1990.

2 Requirements

The gripper envelope code was developed on a SUN3/60 workstation under
the Unix 4.0.2 operating system. It must be linked to the standard I/0O
library and the math library. This code was recompiled and tested on a
SUN4 system with no difficulties.

In order to use the aliases in Section 4.2, the graph and sunplot utilities
must be available and supported on your system. If they are not available,
an utility which plots unconnected line segments followed by labels in double
quotes will perform the same function.

Very little consistency checking on the input data is performed. This re-
quires that the user makes sure that CAD objects are consistent and that all
cartesian coordinate systems are defined by orthogonal bases.

It is very important to remember that the gripper envelope code assumes
that all trajectories are collision-free and that grasp sites do not intersect the
obstacles. Correct results are not guaranteed when these connections are not
met.

3 Build Prqcedure

Installation of the gripper envelope software is facilitated by the inclusion of
a Makefile. Currently the Makefile compiles and links the gripper envelope
code with the file test.c. This can be easily updated for your particular
application by modifying the entries for test and all in the Makefile.

To compile and link the software, simply execute the Unix command ‘make
all’ from the directory containing all the gripper envelope code.

4 User’s Guide

The primary usage of the gripper envelope software is to generate and test
the sweep shadows of environments. The basic flow of the software is:

1) Read CAD data

2) Preprocess CAD data to internal form

3) Load Trajectory data

4) Sweep the CAD data through the trajectory
5) Load Grasp data

6) Test each Grasp Point

7) Save necessary information

Code performing this basic function is provided in the file test.c. The pro-
gram test will prompt the user for two file specifications with the default
directory being the current one. The first specification is for the CAD data
file. The second contains the trajectory and grasp information to test.

The following deficiencies in the algorithm are currently known.

1) The dump_rot_plane routine does not always generate line segments which
completely describe the curves they are to represent. This may result in
object edges that do not always meet at vertices. In certain extreme cases,
this may result in slightly erroneous results from the distance generation
function.

2) Planar faces with holes are not currently supported by the CAD data
structure. To work around this defficiency, add an extra edge which connects
the hole to the outer edge of the face and divide the face into two faces. This
will generate extra edges in the sweep plane, but will not effect the results
of the distance geneation functions.

4.1 Data File Formats

There are two types of input file used by the test feature of the gripper
envelope system. The first is used by the read_CAD routine and processes
a surface model of all the objects in the current system. The format of this
file is:

Number_of_Objects

/* For each object */
Number_of_Vertices Number_of_Faces

/* Orientation and positioning data w.r.t. default origin */
Theta_Rotation Phi_Rotation Scale
X_Translation Y _Translation Z_Translation

/* For each vertex */
Vertex X Vertex.Y Vertex.7Z

/* For each face */
Vertex_Count Vertex_List

Normal X Normal.Y Normal_Z

Many examples of the use of this data style can be found in the case#.dat
files. To view the orthonormal projections of objects along the x-, y-, and
z-axes run the test code with your CAD data file and the view.trj trajectory
file and then plot the dump files. Be sure to modify the top of view.trj so
the proper number of objects are specified.

The second type of input data file for the test system contains the trajectory
and grasp information. The format for this file is:

Number_of_Objects_Assembled /* This may differ from the CAD file */

5

List_of_Assembled.Objects
Number_of_Trajectories

/* For each Trajectory */
Trajectory_Type

/* If Trajectory.Type == 0 then straight line trajectory */

Origin X Origin.Y Origin Z

/* The next three vectors describe a unit orthogonal basis */
Trajectory Dir_X Trajectory Dir Y Trajectory_Dir Z
Basis2 X Basis2_Y Basis2_Z
Basis3.X Basis3.Y Basis3_Z

Length_of_Trajectory

/* Else if Trajectory_Type == 1 then rotational trajectory */

Origin X Origin.Y Origin 7
Rot _Normal X Rot_Normal.Y Rot_Normal Z
Reference X Reference Y Reference 7

Angle_to_Rotate_Through

/* EndIf */

Number_of_Grasp_Sites

/* For each Grasp Site */

Grasp_Type

Grasp-X Grasp-Y /* In sweep coordinates */

/* If Grasp_Type == 1 then only half the sweep need be checked */
Normal X Normal.Y

4.2 Useful Aliases

Some useful aliases when using the dump_plane and dump_rot_plane routines
to display the data.

alias g graph -g 0 -b <dump\!* | sunplot
alias gg graph -b <dump\!x | sunplot
alias gc cat dump\'* grasp.dat | graph -g 0 -b | sunplot

These aliases use graph and sunplot to generate visual representations of the
sweep data without a grid, with a grid, and with grasp data respectively.
They are to be used with a single parameter which is a number representing
the trajectory number to display. These correspond to the dump# files
created by the dump plane routines.

A Manifest

This appendix contains a list of all the files included with the gripper envelope
software package.

A.1 Initialization Files

Makefile - The make file for the source code. Invoked ‘make all’.

const.h - Constants used throughout the code.
data.h — CAD data structure used.
envel.h — Special straight line data structures.

renvel.h - Special rotational data structures.

-

info.tex — Generates this report.

README - Tells how to generate this report.

A.2 Code Files

envel.c - Support routines for straight line sweeps.
minr.c - Computes the minimal radius line for a face.
renvel.c — Support routines for rotational sweeps.
rotate.c - Computes the rotational sweeps.

sweep.c - Conputes the straight line sweeps.

sweepio.c — I/O routines for the package.

A.3 Test Case Files

test.c — Sample calling frame for using the gripper envelope code.

casel.dat
casel.trj — A straight line test case of a two D-cell flashlight.
Tests GRASP TYPE

case2.dat

case2.trj
case2.gsp — A straight line test case of a peg-in-hole with nearby obstructing wall.
Tests GRASP LOCATION

case3.dat
case3.trj — A straight line test case of a peg in a pinched box.
Tests GRASP LOCATION

cased.dat
case4.trj — A straight line test case of a line of indicators.
Tests GRASP LOCATION

case5.dat
caseda.trj

caseSb.trj — A straight line test case of the effects of assembly order.
Tests ASSEMBLY ORDER/TRAJECTORIES

case6.dat

caseb.gsp

caseb.trj — A rotational test case similar to case 2, but with the rotation of a
bolt head.
Tests ROTATIONAL GRASP LOCATION

cube.dat

cube.trj - The original test object with multiple straight line and rotational
trajectories. No grasp sites.

Tests SWEEP CALCULATIONS

grasp.dat - The location of grasp sites in the test case.

view.trj - Orthonormal views of the objects along the primary axes.

B Error Messages

There is very little data checking that takes place within the gripper envelope
software. This is due primarily to its role as a subfunctin within an assembly

sequence planner which generates consistent coordinate data.

The routine read_CAD reports when the CAD file input is not found and
prompts the user for another.

The test code also reports an inappropriate trajectory file name and prompts
the user for another.

10

Appendix C
Software Listings

Makefile

/*****************#**#**#**********#**************#t#**i**#***#t#*l*#t*** /

#/*

/* This Makefile provides the necessary commands to compile and install * |/
¥ /* the planar sweep alogorithms test code.

#

/* Written by: HLW June 1990

#

/*****************i******t****************’k******************#*t*******#* /

Host C—compiler

CFLAGS = -O -fsingle

LIBS = -Im

Host object files

COBJ = sweep.o envelo test.o sweepio.o renvel.o rotate.o minr.o
TNGON =

all: test

test: $(COBJ)
$(CC) $(CFLAGS) -o test $(COBJ) $(LIBS)

test.o: test.c envel.h datah consth

minr.o; minrc envelh datah consth
sweep.o: sweep.c envelh datah consth
envel.o: envel.c envelh consth

sweepio.o: sweepio.c envelh datah consth
renvel.o: renvel.c envelh consth

rotate.o: rotate.c envelh datah consth

clean:
m -f *o *obj *.asm *.map *_map.h *.Ist *¥% core ngon.abs

install: test
mv test /home /welch /bin

spotless: clean
sccs clean

Aug 22 14:22 1990

*/

Makefile

Page 1 of Makefile

envel.c Plane Sweep Software Listing
lid

> NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechnic Institute.

** 1990 ALL RIGHTS RESERVED.

**

**

** Permission to use, distribute, and copy is granted ONLY
** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

*x

** This software is provided in the hope that it will be
** yseful. BUT, in no event will the authors or Rensselaer
** be liable for any damages whatsoever, including any lost
** profits, lost monies, business interruption, or other

** special, incidental or consequential damages arising out
** of the use or inability to use (including but not

** limited to loss of data or data being rendered

** jnaccurate or losses sustained by third parties or a

** failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or
** for any claim by any other party.

>

** This software was developed at the facilities of the

¥ Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project

** funding by NASA.

*4
** Package: Gripper Envelope Detection Using Sweep Shadows

*%

** Written By: Henry L. Welch

**

i)

F L T T T

* envelc — This module contains the support routines to handle *

* the 2-D plane sweep for the gripper envelope problem. *

*

* Written by: HLW June, 1989 *

e e]
I* The following conventions are assumed throughout:

1) Coordinates are seem as row mairices.
2) Transformation matrices are right-multiplied.
*/

#finclude <stdio.h>
#include <math.h>
#include "envel.h"
#include “consth"

void mat3inv (inmat, outmat)
float inmat{3][3]; /* Input matrix * /
float outmat[3][3]; * Inverse matrix * /

/* The routine mat3inv, inverts the matrix inmat using Gauss-Jordan
elimination and returns the resultl in the matrix outmat.
The matrices are all considered to be 3x3. */

* This routine ASSUMES that the input matrix is non-singular. * |

{

#define size 3 /* The matrix sizes * [/
int ijk; /* Loop indices * |

Aug 22 14:04 1990

envel.c

Page 1 of envel.c

envel.c Plane Sweep Softwarc Listing

envel.c

float pivot; /* The pivot value * /
float null; /¥ The value to null * /[
float swap; /* Temp. swap storage * |
float tmpmat[3}{3]; /¥ Scratch storage * |

/* Initialize the output matrix to the identity * [
for (i = 0; i < size; i++) |
for = 0; j < size; j++) |
tmpmat[i][jl = inmat[i](j};
outmat{i)[j] = 0.0;

outmat [i]fi] = 1.0;

/* Begin scanning the rows */
for (G = 0; i < size; i++) |
/* check the pivot element * [
pivot = tmpmatfil{i];
it (pivot = 0.0) {
/* scan for a non—zero pivot element * [
j=i+ 1
while (tmpmat{j][i] == 0.0) j++
/¥ swap the rows */
for (k = 0; k < size; k++) |
swap = tmpmatfi]{k];
tmpmat(ij(k] = tmpmat[jj{k};
tmpmat[j][k] = swap;
swap = outmat[i]{k];
outmat[i)(k] outmat{j](k};
outmat[jl{k] swap;

pivot = tmpmat[i]{i];
} /* end if (pivot */

[* invert the pivot and normalize the diagonal element ™ [
pivot = 1.0 / pivot;
for (k = 0; k < size; k++) (
tmpmat[i](k] = tmpmat[ijk] * pivot;
outmat{i][k] = outmat{i][k] * pivot;

}

/* clear the pivot element’s column * [
for (j = 0; j < size; j++)
it G = 1) {(
null = —tmpmat(j]{i];
for (k = 0; k < size; k++) {
tmpmat[jj(k] +=. null * tmpmat[i](k];
outmat[j][k] += null * outmatfi][k];

)
) It end if (j 1= 1
} /* end for (i = 0 */
} * end routine mat3inv */

void mat4mul (matl, mat2, outmat)
float mat1[4][4], ma2[4](4], outmat{4][4]; 1* The 4x4 matrices * [

[* The routine matdmul multiplies the two 4x4 matrices matl and mai2 to
find outmat. Matl will be multiplied left of mat2. * /

int ijk; /* Loop indices * /

#define sz 4

Aug 22 14:04 1990

Page 2 of envel.c

envel.c

/¥ loop on rows * |/
for i = 0, i < sz i++)
/* loop on columns * |
for j = 0; j < sz j++) |
outmat[i][j] = 0.0;
/¥ perform summing multiplication * /
for k = 0; k < sz; k++)

outmat[i][j] += matl[i}[k] * mat2[k](j};

} /* routine matdmul * [

vold do_xfm (xfm, invert, outvert)
float xfm([4){4];

struct t_coord4 invert;

struct coord3 *outvert;

Plane Sweep Software Listing

envel.c

/* Transformation matrix * [
/* Incoming vertex * [
/* Transformed vertex * [

/% The routine do_xfm performs the homogeneous transformation xfm io the

vertex invert and generates a 3-D point outvert * /

int i;

/* loop on each coordinate of the vertex * /[

for i = 0; i < 3; i++) {
outvert->ptfi] = 0.0;
/* perform coordinate transformation * |
outvert—>pt[i] = invertx * xfm[0]{i];
outvert—>pt{i] += inverty * xfm[1}{i];
outvert—>pt[i] += invertz * xfm[2]{i];
outvert—>pt[i] += invertw * xfm[3][i];

Y} /> for (i */

} /* routine do_xfm */

void findloc (point, origin, basis, loc)
float point[3];

float origin [3];

float basis[3][3];

float loc[3];

/* The routine findloc projects a point onto a basis

/* Loop indices * /

/* Point to project * [
/% Origin for basis * [
/* Inverted basis matrix * /
/* Location in basis space * [

wr.t an arbitrary

coordinate system origin. The result is returned in loc. * |

int i.js
float diff[3);

{* Loop indices * /
/* Difference vector * /

/* find the location of the point relative to the origin * |

for i = 0; i < 3; i++)
diff{i] = point[i] ~ origin[i];

f* find the location via matrix multiplication * /
for (i = 0; i < 3; i++) {
loc[i] = 0.0;
for j = 0; j < 3; j++)
locli] += basis[j](i] * diff{j];
Y /¥ for (i =0 *]
} 7* routine findloc * /

int sweepseg (origin, basis, length, pl, p2, segment)
float origin[3];

Aug 22 14:04 1990

/* Origin for basis * /[

Page 3 of envel.c

envel.c

float basis [3](3];
Moat length;

float pl[3],p2(3];
struct seg *segment;

Plane Sweep Software Listing

envel.c

/* Inverted basis matrix * [
/* Length of sweep * [/
[* Endpoints of segment * /

{* 2-D segment * |

/* The routine sweepseg sweeps a plane described by an origin and basis
along the trajectory traj for a distance length. The endpoints of the
line segment defined by pl and p2 in the swept plane are returned as
2-D coordinates in opl and op2. If the segmemt is not swept by the plane,
then the routine returns 0; otherwise it returns 1. * [

float projl[3].proj2(3];
float z1, z2;

float diff[3];

int i

/* project the two points * /
findloc (pl, origin, basis, projl);

z1 = projl{0];
findloc (p2, origin, basis, proj2);
22 = proj2(0];

for (i = 0; i < 3; i++)
difffi] = proj2(i] - projl[i];
/* Determine if the segment is even swept * [
ir ((z1 < 0.0) & (22 < 0.0)
return(0);
else if ((z1 > length) & (z2 > length))
return(0);
else {
* clip the segment if it needs it */
I* deal with point I first * [
it (z1 < 0.0) {
projl[1] += —z1 * diff{1] /diff[0];
projl{2] += -zl * diff{2] /difff0]};

else if (z1 > length) {
projl[1] += (length — z1) * difff1] /diff(0];
projlf2] += (length — z1) * difff2] /diff[0];

/* deal with point 2 * |/

ir (22 < 0.0) {
proj2[1] += —22 * diff1) /diff{0];
proj2(2] += —z2 * diff[2] /diff{0];

else If (2 > length) {
proj2{1] += (length — 2z2) * diff{1] /diff[0];
proj2(2} += (length - 2z2) * diff[2] /diff[0];

/* The projections of pl, p2 * |/
/* Traj. direction coords. * /
/* Projection differences * |
/* A loop index * |/

/* clipping complete, copy the results and return * |

for (i = 0; i < 2; i++) {

segment—>plfi] = projifi+l};
segment->p2{i] = proj2[i+1};
return(l);
} /* else */

} /* routine sweepseg * |

voild d_pt2seg(point, segment, d, pc)
float point[2];

Aug 22 14:04 1990

/* point in 2D * [

Page 4 of envel ¢

envel.c Plane Sweep Software Listing envel.c

struct seg segment; /* segment end-points * [
float *d; I* the closest distance * [
float pc(2]; /* the closest point * |

/* The routine d_pt2seg determines the closest point on the line segment
pl p2 to point and returns that point as pc, along with the distance d 2.
The routine generates a line from pl toward p2 and determines the closest
point on this line as represented by the parameter m. If m is not in
the range [0,1] then the appropriate endpoint is returned. * /

float m; /* projection on segment * [
#idefine x1 segment.pl[0]
#idefine yl segment.pl[1]
#define x2 segment.p2[0}
#idefine y2 segment.p2(l1}
#define x point[0]
#deflne y poini[l]

/* find the value of m that satisfies the equation that the first
derivative of the euclidean distance is 0. * /
m = ((x2 - xI)*(x2 - x1) + (y2 - yD*(y2 - yD)

it (m == 0) { /* The segment is only a point * [
pe[0] = x1;
pell] = yL;

else { /* process normally * /
m=((x2 - xI)*x - x1) + (y2 - yD*¢y - yl)) / m;

* clip m*/
if m > 1.0) m = 1.0;
iff m < 0.0) m = 0.0;

/* find the distance and the point to return * [
pel0] = x1 + m*(x2 — x1);
pe(l] = y1 + m*(y2 - yl);

} /* end else of if (m == 0 */

d = (x - pe[0D)(x - pe[0]) + (y — pe[I*@ — pell]);
} /* routine d_pt2seg * |

int half plane(inplane, incount, origin, normal, outplane, outcount)

struct seg inplane[2*TOT_VERTS]; /* Unclipped segments * [

int incount; * # of segments * [

float origin[2]; . I* point on clipping plane */
float normalf2}; I* outward normal of plane * /
struct seg outplane[2*TOT_VERTS]; /* Clipped half plane * /|

int *outcount; * # of output vertices * [

/* The routine half plane clips a set of line segments within a plane so
that they lie in the half plane defined by a normal and point. The
resulting segments and their number are computed with the count being
returned.

NOTE: This routine assumes no overlap of the segments which define the
swept objects and the origin point of the clipping plane. * /

int i /* Loop indices * /
float dotl, dot2; * Dot products * /

Aug 22 14:04 1990 Page 5 of envel.c

envel.c Plane Sweep Softwarc Listing envel.c

float proj; /* Poirs locator * |

/* initialize the output count and loop on all the input segmemss * |
*outcount = 0;
for (i = 0; i < incount; i++) {

/* Find the dot products of the endpoinis with the normal * |/
dotl = do2 = 00;
for (j = 0; j < 2; j+9) |
dotl += normal[j] * (inplane[i].pl(j} — origin(j]};
dot2 += normalfj] * (inplanefi].p2{j] - origin[j])
}

/* Check for clipping of the endpoints * |
it ((dotl >= 0.0) & (dot2 >= 0.0)) {
for =0, j <2 j+v) {
outplane[*outcount].p1[j]
outplane[*outcount}.p2[j}

inplane(i].p1[j};
inplane(i].p2(j);

*outcount = *outcount + 1;

}
else if (((dotl < 0.0) & (dor2 >= 0.0)) |
((dot2 >= 0.0) & (dot2 < 0.0)) {
/* One end must be clipped * |
proj = normal{0] * (inplane[i].pl{0] - origin[0]) +
normal[1] * (inplane(i].p1{1] - origin[1]);
proj = proj / (normal0] * (inplane[i].p1{0] — inplane[i].p2[0]) +
normal[l] * (inplane[i]l.p1[1] — inplane[i].p2[1]));

/* See which end * /
it (dotl < 0.0)
for § = 0; j < 2; j+0 (
outplane[*outcount].p1{j] inplane(i].p1{j} * (1.0 — proj)
+ inplane{i].p2[j] * proj;

inplane(i].p2[jl;

outplane|*outcount].p2(j]

)
else for G = 0; j < 2 j +) {
outplane[*outcount].p2(j] = inplane[i].p1[j] * (1.0 - proj)
+ inplane[i].p2[j] * proj;
outplane[*outcount].p1[j] = inplanefi].p1[jl;

*outcount = *outcount + 1;
} I* else if (((dotl * [
} /> for (i =0 */
return(*outcount);
} /* routine half plane * /

Aug 22 14:04 1990 Page 6 of envel.c

minr.c Plane Sweep Software Listing
*

*x NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechnic Institute.

** 1990 ALL RIGHTS RESERVED.

**

*x

** Permission to use, distribute, and copy is granted ONLY
** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

**

** This software is provided in the hope that it will be
** yseful. BUT, in no event will the authors or Rensselaer
** be liable for any damages whatsoever, including any lost
** profits, lost monies, business interruption, or other

** special, incidental or consequential damages arising owt
** of the use or inability to use (including but not

** limited to loss of data or data being rendered

** inaccurate or losses sustained by third parties or a

** failure of this software 1o operate) even if the user

** has been advised of the possibility of such damages, or
** for any claim by any other party.

o

** This softiware was developed at the facilities of the

*% Center for Intelligent Robotic Systems for Space

** Exploration, Troy, New York, thanks to generous project
** funding by NASA.

**
** Package: Gripper Envelope Detection Using Sweep Shadows

**

** Written By: Henry L. Welch

*x

*/

F e e T T e

* minrc — This module contains the support routines to handle *

* the calculation of the minimal radius edge for *

¥ rotational sweep shadows. *
*

* Written by: HLW November, 1989 *

L L T T]
I* The following conventions are assumed throughowt:

1) Coordinates are seen as row matrices.
2) Transformation matrices are right—multiplied.
*/

flinclude <stdio.h>
#include <math.h>
#include "envel.h"
#include "const.h”"

int getminline(point, normal, refpt, step)

float point[3]; /* A point on the plane * [
float normal(3]; /* Normal of the plane * |
float refpt[3]; /* Nominal start pt of line */
float step[3]; /* Parametric step of line * |/

I* The routine getminline computes the minimal radius line on a plane for
a rotational sweep shadow. It returns a value of 0 when the line
exists and a value of 1 when the line degenerates to a point (ie
z = const. * [

Aug 22 14:29 1990

minr.c

Page 1 of minr.c

minr.c Plane Sweep Software Listing minr.c

#define A normal[0] /* Planar values in the * |/
#define B normal[1] f* forom Ax + By + Cz = D */
#define C normal[2]

float D;

float temp; /* Scratch storage * [

/¥ Compute the D parameter * |

D = A*point{0] + B*poin{1] + C*point[2};

[* Check for degenerate cases * |

If (A == 00) & B == 0.0)) /* Plane is constant z */
return(l);

else if (B == 0.0) {
* y defaults to zero */

refpt[0] = D /A;
refpt[1] = 0.0;
refpt[2] = 0.0;
step[0] = —C/A;
step[l] = 0.0;
step[2] = 1.0;
return(0);

else { /* This is the normal case * |/
temp = A*A + B*B;

refptf0] = A*D /temp;

refpt{1] = (D — A*refpt[0]) /B;

refpt[2] = 0.0;

step[0] = —A*C /temp;

step[l] = (D — C — A*(refpt{0] + step[0])) /B - refpt[1];
step[2] = 1.0;

return(0);

} /* routine getminline * |

int edge_clip(proj, refpt, step, loc)

struct tmp_rot *proj; /* Projected edge * /

float refpt[3]; /¥ New edge ref. pt. */
float step(3]; /* Parametric step * /
float *loc; /* Parametric location * [

/* The routine edge clip determines the intersection point between the
edge described in proj and the parametric line described by refpt and
step. The parametric location on the line is returned in loc. Since
there are many non—applicable possibilities, a return code is employed.
Its values are: 0 — Intersection at a point

1 — Intersection at start point of edge
2 — Intersection at end point of edge
4 — Intersection along the entire edge
8 - No Intersection

*/
{
float diff[3]; /* Difference vector * |
int i /* Loop index */
float eloc; f* Location on the edge * |
int parallel; /* Condition flag * /

int same;
[* Compute the difference vector for the edge * [
for i = 0; i < 3; i++)

diffi] = proj->rp3[i] - proj->rpllil;

Aug 22 14:29 1990 Page 2 of minr.c

minr.c Plane Sweep Software Listing

I* Check for edge and line parallel * [
parallel = TRUE;
for i = 0, i < 2; i++)
It ((difff2)*stepli]) != diff(i]) parallel = FALSE;

f* Determine if the line is the same as the edge * [
if (parallel == TRUE) ({
same = TRUE;
for i =0, i < 2; i++)
It ((refptli] + proj—>rpl[2])*step[i]) != proj—>rplli]) same = FALSE;
if (same == TRUE)
return(4);
else return(8);

else { /* An intersection occurs * [
[* Compute the parametric intersection point on the edge * [
/* NOTE: step[2] = 1.0 and refpt[2] = 0.0 and are not included! *]
eloc = (diff[1] — step[1]*diff[2]);

I* check for degenerate case * /
if (eloc == 0.0) {
eloc = 1.0 (difff0] — step[0]*diff[2]);
eloc = eloc * (refpt[0] — proj->1pl[0] + step[0]*proj—>rpl[2]);

/* if eloc is out of range, discontinue processing * /
If ((eloc < 0.0) | (eloc > 1.0))
return(8);
else { /* Compute the intersection point * |
*loc = proj—>rpl[2] + eloc*diff[2];
/* return the appropriate code * /
if (eloc == 0.0) return(l);
else if (eloc == 1.0) return(2);
else return(0);
)
}
else (
eloc
eloc

1.0 /eloc;
eloc * (refpt[l] — proj—>rpl[l] + step[1]*proj—>rpl[2]);

/* if eloc is out of range, discontinue processing * /

iIf ((eloc < 0.0) | (eloc > 1.0))
return(8);

else { /* Compute the intersection point * [
*loc = proj—>rpl{2] + eloc*diff2];
I* return the appropriate code * [
if (eloc == 0.0) return(l);
else if (eloc == 1.0) return(2);
else return(0);

}

)
} /* Intersection occurs * [
} /* Routine edge clip */

int vcross(vl, v2, cross)

float vI1[3]; /¥ Vector 1 ¥/
float v2(3]; /* Vector 2 */
float cross[3]; /* Cross Product * /

Aug 22 14:29 1990

minr.c

Page 3 of minr.c

minr.c Plane Sweep Software Listing minr.c

I* The routine vcross computes the cross product of iwo veciors and

}

returns the result. If vl and v2 are parallel, then a return code
of 1 is supplied; otherwise the return code is 0. */

/* Compute the cross product * /

cross[0] = v1[1]*v2(2] - v1[2]*v2(1];
cross[1] = v1[2]*v2[0] - v1[0]*v2{2);
cross[2] = vI[0}*v2[1] — vi[1]*v2[0};

/* Check for parallel vectors * |

if ((cross[0] == 0.0) & (cross[1] == 0.0) & (cross[2] == 0.0))
return(l);

else return(0);

/* Routine vcross * |/

int is_cross(vl, v2, ref)

struct tmp_rot *vl, *v2; /* Vectors to test * |
float ref[3]; /* Reference vector * /|

/* The routine is_cross compares the cross producls of the two edges with the

reference vector to determine if a cross over occurs. TRUE is returned
when this occurs. * /

float d1{3],d2[3]; /* Edge diff vectors * [
float ml.m2; /* Magnitude values * [
float cl[3],c2[3); /* Cross products * /

int dif; /* Boolean flag * /
int i /* Loop index * |/

/¥ Generate the two edge difference vectors * |
for i = 0; i < 3; i++) {

difi] vi->mp3fi] - vi->mplli;

d2[i] = v2—>mp3li] — v2—>mplli);

/¥ Find the cross products * |/
veross(vl, ref, cl);
veross(v2, ref, c2);

&

/% Normalize the two vectors * [
ml = m2 = 0.0; .
for i =0;,i < 3; i++) {

ml += cl[i] * cl[i];

m2 += c2[i} * c2[i];

}
ml = (float)sqri((double)ml);
m2 = (float)sqri({double)m2);

for G = 0; i < 3; i+t {
clfi] = clfi] / ml;

c2{i} = c2[i} / m2;
)
[* Compare the two vectors * |
dif = FALSE;

for i = 0; i < 3; i++)
if (cl(i] !'= c2(i]) dif = TRUE;

Aug 22 14:29 1990 Page 4 of minr.c

minr.c

Plane Sweep Software Listing

return(dif);
) /* Routine is_cross */

void do_minr(proj, num, norm, h0, ref0, refm, thetamax, rot_plane, count)

struct tmp_rot proj[MAX_VERTS_FACE];
int num;
float norm{3];

float hoO;

float ref0(3].refm[3];

float thetamax;

struct rot_seg rot_plane[4*TOT_VERTS];
int *count;

* Current face * /
/* Edges on the face * |/
f* Normal of the face * [/
I* height @ r=0 */
1* Ref. clip vectors * [
/* Clip theta * /

/* Clipped edges * |

* # clipped edges * |

I* The routine do_minr computes the minimum radius of the shadow and
performs the projections necessary to place the shadow into the
rotational sweep plane. * [

{
float refpt{3]; /* Ref. pt. of minr line * [
float step[3]; f* Para. step of line * |/
float loc{MAX VERTS_FACE]}; /* Para. pts on line */
int code; /¥ edge clip rin code * |/
int scode; /* Rin code of Ist edge * /
int pir; /* Pointer of edge list * [
int cnt; 1* Counts # intersect. * [
int last; /* Temporary memory * [
int i; M Loop indices * [
float swap; /* Sorting variable * [
int sptr; /* Pointer to Ist edge * /
float temp; I* Temporary data * |/
struct wnp_rot minffMAX VERTS_FACE]; * Minr edges * |/
float tmax; f* Actual thetamax * [
f* Find the parameters of the minimal radius line * |
code = getminline(proj[0].rpl, norm, refpt, step);
/* Intersect the line with the face * [
If (code = 1) {
/* Intersect with the first edge * [
ptr = cnt = O;
scode = code = edge_clip(&proj[ptr], refpt, step, &locfcnt]);
/* Skip over initial edges that are on the minimal radius line * /
while ((ptr < (num-1)) & (code == 4)) |
ptr++;
code = edge_clip(&proj{ptr], refpt, step, &loc[ent]);
}
I* Remember this edge * [
sptr = ptr;
I* Do the remaining edges * /
while (ptr < num) {
I* Check the edge * |
code = edge_clip(&proj[ptr], refpt, step, &loc[ent]);
Aug 22 14:29 1990

minr.c

Page 5 of minr.c

minr.c Plane Sweep Software Listing minr.c

/* Determine the type of edge * |/
if (code == 0) { cni++;
}

else if (code == 2) {
/* Skip to edge of edge [vertex intersection pair * /

last = ptr;
code = 4;
while ((pr < (num-1)) & (code == 4)) {

pir++;

code = edge_clip(&projptr], refpt, step, &loc[cnt]);

}

/* if not at end, process intersection * |
if (code != 4)

if (is_cross(&proj[ptr], &proj[last], step) == TRUE) {

cni++;

else cnt = cnt ~ 1;
} I* else if code = 2 ¥/

/* go to next edge */
pir++;
} /* while ptr < num * [

f* check for processing over the closure * |/
if ((code = 4) | (code == 2))
if (is_cross(&projlast], &proj[sptr], step) == TRUE) {
cnt++;
)

else cnt = cnt ~ 1;

/* Sort the parametric poinis * |
for (i = 0; i < (ent = 1); i++H)
for = (G + 1) j < eng j++)
if Qocfi] > loc[iD) {

temp = locli];

loc[i] = loc[j};
loclj] = temp;
)
/* Convert the parametric points to edges * |
pr = O;

for (i = 0; i <ent; i += 2) {
/* Copy over the start, middle, and end points * [
temp = 05*(loc[i] + loc[i+1]);
for (j = 0; j < 3; j+9) {

minr[pur]apl[j] = refptlj] + step[j]*locil;
minr{ptr].p3[j] = refptlj] + step(j]*locfi+1);
minr[ptr].ip2(j] = refptljl + step[j]*temp;

)
/* Compute the theta values * |
if ((minr[pt]rpl[0] == 0.0) & (minr[pu]pl[l] == 0.0))
minr{ptr].th{0] = 0.0;
else
minr[pr]th[0] = (float)atan2((double)minr{pt]rpi[l],
(double)minr[ptr].rp1{0]);

if ((minrfptr].p2{0] == 0.0) & (minr[pe]rp2(l] == 0.0))
minr[pr).th[1] = 0.0;
else
minr{pir].th[1] = (float)atan2((double)minr[pu].rp2[1],
(double)minr(ptr].rp2[0]);

Aug 22 14:29 1990 Page 6 of minr.c

minr.c Plane Sweep Software Listing minr.c

It ((minrfptr].rp3{0] == 0.0) & (minr[pur].rp3(1] == 0.0))
minr{ptr].th{2] = 0.0;
else

minr[ptr].th{2] = (feat)atan2((double)minr[ptr].rp3[1],

(double)minr{ptr].rp3[0]);
for G = 0; i < 3; i++)
if (minr[ptr].th[i] < 0.0)
minr[ptr].th[i] += 2*pi;
} X fori=20*]/
I* clip the minimal radius edges * /

— cnt ent [/ 2;
tmax thetamax;

if (thetamax > pi) { /* Sweep in two sections

*/
for i = 0; i < cnt; i++)
code = rot_clip(&minr[i], 1.0, ref0, ref0, pi, hO,
rot_plane, count);
rot_reflect(minr, cnt);
for i = 0; i < cnt; i++)
code = rot_clip(&minr{i], -1.0, ref0, ref0, pi, hO,
rot_plane, count);
tmax = thetamax - pi;
}
for (i = 0; i < cnt; i++)
code = rot_clip(&minrfi], 1.0, ref0, refm, tmax, hO,
rot_plane, count);
rot_reflect(minr, cnt);
for (i = 0; i < cnt; i++)
code = rot_clip(&minr[i}, —1.0, ref0, refm, tmax, hO,
rot_plane, count);

} /X if code <> 1 */
} /* routine do_minr * [}

Aug 22 14:29 1990

Page 7 of minr.c

renvel.c Plane Sweep Software Listing
*

> NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechnic Institute.

** 1990 ALL RIGHTS RESERVED.

*

=

** Pormission to use, distribute, and copy is granted ONLY

%
%
*%
*%
*%
e
o
%
1)
*k
%
TS
*k
.k
*k
X
*x
.k
.
*x
%
**
%
%

*/

for research purposes, provided that this notice is
displayed and the author is acknowledged.

This software is provided in the hope that it will be
useful. BUT, in no evemt will the authors or Rensselaer
be liable for any damages whatsoever, including any lost
profits, lost monies, business interruption, or other
special, incidental or consequential damages arising out
of the use or inability to use (including but not
limited to loss of data or data being rendered
inaccurate or losses sustained by third parties or a
failure of this software to operate) even if the user
has been advised of the possibility of such damages, or
for any claim by any other party.

This software was developed at the facilities of the
Center for Intelligent Robotic Systems for Space
Exploration, Troy, New York, thanks to generous project

funding by NASA.
Package: Gripper Envelope Detection Using Sweep Shadows

Written By: Henry L. Welch

/#**l*#***********#****************i***************************i***i***

*

* ® *

renvelc — This module contains the support routines to handle

*

the 2-D plane sweep for the gripper envelope problem. *

Rotational routines only.

Written by: HLW November, 1989

t*t#**l***#******#*#*****ti*******t*******t******************#*******t/

I#

*/

The following conventions are assumed throughowt:

1) Coordinates are seen as row matrices.
2) Transformation mairices are right-multiplied.

#include <stdio.h>
#include <math.h>
#include "envel.h”
#include "consth”

void getrotref(rot, origin, thetam, pt, ref, ref0, refm)

float rot(3}; /* rotation axis * |/

float origin[3]; /¥ origin of rotation * /

float thetam; /* theta maximum * [

float piy3}; /* point to reference * |/
float ref[3](3]; /* coord. sys. xform. * [

float ref0[3]; [*¥ ref. vector for thetal * /
float refm[3]; /* ref. vector for thetamax * [

1* The routine getrotref determines the reference matrices for the

theta=0 and theta=thetamax orientations of the rotational sweep
plane. It requires an axis of rotation, the origin of the rotation,
the extent of the rotation, and the reference point about

Aug 22 14:10 1990

renvel.c

Page 1 of renvel.c

renvel.c Plane Sweep Software Listing renvel.c

which to base the rotational sweep. * [

{
int i; /* loop index */
float dot; /* dot product * |
float mag; /¥ vector magnitude * |
float mat[3][3]; [* non—inverted coord. mtx * [
float diff[3]; [* difference vector * [
float temp; /* temporary storage * /
float cm,sm; /* cosine and sine of thetamax * [

/* set-up the z—axis, compute the difference vector and ref dot product * /
mag = 0.0;
for i = 0; i < 3; i++)
mag += rot[i]*rot[i];
mag = (float)sqri{(double)mag);

dot = 0.0;

for i = 0; i < 3; i++) {
mat[2][i] = rotfi] /mag;
difffi] = pt{i] — origin[i];
dot += diffli]*mat[2][i];

* compute the reference x—axis using a normalization procedure * /
mag = 00;

for (i = 0; i < 3; i++) |
mat[0][i] = diff[i] - dot*mat{2][i);
mag -+= mat[0][i]*mat[O]{i];
}
mag = (float)sqrt((double)mag);
for i = 0; i < 3; i++)
mat[0][i] = mat[0][i] /mag;

/* compute the reference y-axis by using a cross product * [

mat[1]{0] = mat[2])[1]*mat[0][2] — mat[2]{2]*mat[0}{1];
mat[1}[1] = mat[2}{2]*mat[0][0] — mat(2]{0]*mat[0][{2];
mat[1]{2] = mat[2]{0]*mat[0][1] — mat[2]){1]*mat[0][0];

/* compute the zero reference by inversion * /
mat3inv(mat, ref);

/* compuwte the thetamax reference by rotation * [
if (thetam > pi) thetam = thetam -~ pi;

cm = (float)cos((double)thetam);

sm = (float)sin((double)thetam); -

/* assign the reference vectors for clipping * /

ref0[0] = ;
ref0[1] = 1.0;
ref0f2) = 0.0;
refm[0] = -sm;
refm[l] = cm;
refm[2] = 0.0;

} /¥ routine getrotref * /

void get norm (innorm, ref, outnorm)

Aug 22 14:10 1990 Page 2 of renvel.c

renvel.c Plane Sweep Software Listing renvel.c

struct coord3 innorm; /* original normal * [
float ref[3](3]; /¥ coord xform mix */
float outnorm[3]; 1* xformed normal * /

/* The routine get_norm transforms a planar normal vector from one
rectangular coordinate system to another. * [

int ij; /* loop indices * /

/* perform the xform * |
for i = 0; i < 3; i+ {
outnormfi] = 0.0;
for G = 0; j < 3; j+b)
outnorm[i] += innorm.pt{j]*ref[jl[i];

Y * for (i = */

)} * procedure get_norm * |/

vold rOht(proj, norm, h)

struct tmp_rot *proj; {* plane information * |
float norm([3]; [* plane normal * /
float *h; /* height at r=0 */

/* The routine rOht determines the height of a plane at the point
where the cylindrical coordinate r = 0.

NOTE: It is mathematically impossible for this routine to be called
when norm{2] (ie nz) is 0.0 */
int i; /* loop index */
/* compute the height using vector calculus * /
*h = 00;
for (i = 0; i < 3; i++)

*h = *h + proj->rpl[i] * norm[i] morm[2];

} 7/* procedure rOht */

vold r2p(pt, origin, ref, 1p, th)

float pt[3]; /* original cart pt * [
float origin[3];) /* local origin */

foat ref[3][3]; /* coord xfrom mix *]
float rp{3]; /* xformed cart. pt * [
float *th; /* cylindrical theta */

/* The routine r2p converts a cartesian point from one reference frame
to another and computes the cylindral theta of that point in the new
reference frame. * [

int ij; /* loop indices * [
[* transform the point from one frame to the other * |
for i = 0; i < 3; it+) |
pli] = 0.0;
for G = 0; j < 3; j+)
wpli] += (] - origin[j))*refljl(i};

Aug 22 14:10 1990 Page 3 of renvel.c

renvel.c Plane Sweep Software Listing renvel.c

/* compute the cylindrical theta * |
if ((rp(0] == 0.0) & (p(1] == 0.0))
*th = 0.0;
else
*th = (float)atan2((double)rp[1]), (double)rp{0]);

if (*th < 0.0) *th = 2*pi + *th;
} /* routine r2p */

void rot_prep (pl, p2, origin, ref, proj)

float pl[3}; /* starting endpoint * |
float p2[3}; [* ending endpoint * [
float origin{3]; /* local origin * [

float ref{3][3]); /* coord. sys. xform * [/

struct tmp_rot *proj; /* projected data * |/

/* The routine rot_prep converts a line segment in one cartesian
reference frame to another via a local origin and new basis vector
set. The new cartesian coordinates are then projected to an angle
in the cylindrical coordinate frame of the same orientation. * |/

float tmp(3]; /¥ temp midpoint * [
int j; /* loop index */

I* convert the endpoints * |
2p(pl, origin, ref, proj—>rpl, &proj—>th[0]);
2p(p2, origin, ref, proj—>rp3, &proj->th{2]);
/* find and convert the line segments midpoint * |
for (i = 0; i < 3; i++)
mpli] = 0.5 * (p1[i] + p2i]);
r2p(tmp, origin, ref, proj—>rp2, &proj—>th{1]);

} [* routine rot_prep * |/

void get mpt(proj, ref, mpt)

struct tmp_rot *proj; /* temporary proj */
float ref[3]; /* reference vector * [
float mpt[3]; /* clipped point * |

/* The routine get_mpt clips the projected line segment described by
proj to the angle defined by the vector ref. The resultant point
is returned in mpt. * |

{
float dotl, dot2; I* dot products * [
fnt j; f* loop index * |/
float m; [* distance along seg. */

I* use vector calculus to perform the clip *]
/* compute the two dot products * [
dotl = do2 = 0.0;
for (i = 0,1 < 3; i++) {
dotl += proj—>rpl[i] * reffi];
dot2 += proj->rp3(i] * reffi];
}

Aug 22 14:10 1990 Page 4 of renvel.c

renvel.c Plane Sweep Softwarc Listing renvel.c

/* find the segment point on the clip angle */
m = dotl / (dotl — dot2);

for (i = 0; i < 3; i++)
mptfi] = proj—>wpl[i] + m*(proj—>rp3[i] — proj—>1plli])

} /* routine get_mpt */

vold rot_reflect(proj, count)

struct tmp_rot proj[MAX_VERTS_FACE]; /¥ points to reflect * [
int count; /* number of points * |
{

int ij; /* loop indices * [

[* reflect all thetas through the origin * /
for (i = 0; i < count; i++)
for G = 0, j < 3; j+H)
i (proj(i].th{j] < pi)
projlil.th(j] += pi;
else
projlil.th(j] += -pi;

} /* routine rot_reflect * |

void full_rot(proj, ref, rot plane, count)

struct tmp_rot *proj; /* segment to proj * /[
float ref[3]; /* clip reference * /
struct rot_seg rot_plane[4*TOT_VERTS]; /¥ clipped points * [

int *count; f* no of points * [

/* The routine full_rot performs the projection and clipping necessary
for a rotation of exactly pi radians. * [

{
float mpt[3}; /* clipped point * /
int 1; /* loop index */
/* check for segment in first two quadrants only * /
if ((proj->th[0] <= pi) & (proj—>th{2] <= pi)) {
for (i = 0; i < 3; i++) |
rot_plane{*count].pt{i] = proj->rpl[i];
rot_plane{*count].deli] = proj->mp3[i] - proj—>rpl{il;
rot_plane[*count].sign = 1.0;
*count = *count + 1;
)
else /* check for segment in third and fourth quadrants only * /
if((proj->th[0] > pi) & (proj->th[2] > pi)) (
for (i = 0; i < 3; i++) {
rot_plane[*count).pffi] = proj—>rpl[i};
rot_plane[*count].del[i] = proj->rp3[i] - proj~>rpl{il;
rot_planef{*count].sign = 1.0;
*count = *count + 1;
)
Aug 22 14:10 1990 Page 5 of renvel.c

renvel.c Plane Sweep Software Listing

else { /* segment must be clipped at theta = Opi */
get_mpt(proj, ref, mpt);

/* save the clipped data * |/
for (i = 0; i < 3; i++) {
rot_plane[*count].pt{i]
rot_plane[*count].del[i]
rot_plane[*count+1}.pt{i]
rot_plane[*count+1].del(i]

)

/* determine which half has the positive r values * |
it (proj—>th[0] <= pi) (/* first endpoint in quads | & 2 */

proj—->rpl{i];

mpt[i] - proj->rpl{il;
mpt[i];

proj->rp3[i] — mpt[i];

rot_plane[*count].sign = 1L.0;

rot_plane[*count+1].sign = -1.0;
else {

rot_plane{*count].sign = -1.0;

rot_plane{*count+1].sign = 1.0;

)

*count = *count + 2;
} [/* else seg must be clipped * /

} /* routine full rot * |/

int rot_clip(proj, sign, ref0, refm, thetamax, hQ, rot_plane, count)

struct tmp_rot *proj; /* segment to clip * /

float sign; /* sign of r */

float refO[3]; * 0 clip vector * [

float refm[3]; I* max clip vector * [
float thetamax; * maximum theta * /
float hO; /* height @ r=0 */
struct rot_seg rot_plane[4*TOT_VERTS]; /* clipped segments * |

int *count; /* no of clipped segs * /

/* The routine rot_clip performs the rotational clipping of an input
segment. Due to the complications caused by rotational wrap
around and reflection through the origin, various return codes are
used to denote the type of clip which took place. * /

{
float mpt[3]; /* clipped point * /]
int i; : /* loop index * |/
int rn code; /* return code * /

#define thetal proj—>th[0]
#define theta2 proj—>th[1]
#dcfine theta3 proj—>th[2]

I* save the sign * |/
rot_plane[*count].sign = sign;

f* Check for segment location relative to the theta wedge * [

if (thetal <= thetamax) {
if (theta3 <= thetamax) {

/* Segment all inclusive and not clipped * /

for (1 = 0; i < 3; i++) {
rot_plane[*count].pt/i] = proj->rpl[il;
rot_plane[*count].del[i}] = proj->rp3[i] — proj—>rpl[il;

Aug 22 14:10 1990

renvel.c

Page 6 of renvel.c

renvel.c Plane Sweep Software Listing
}
*count = *count + 1;
nn_code = 1;
}

else { /* clip theta3 */
if ((theta2 > theta3) | (theta2 < thetal)) {
/* clip theta3 to zero * |/
get_mpt(proj, ref0, mpt);
nn_code = 16;

}
else {

/* clip theta3 to thetamax * |
get_mpt(proj, refm, mpt);
rtn_code = 24;

)

/* Store the clipped segment * [

for (i = 0; i < 3; i++) {
rot_plane[*count].ptli] = proj->rpl[i};

rot_plane[*count].del{i] = mpt[i] - proj—>rplii];

}
*count = *count + 1;
} /* else clip theta3 */

} /* if thetal <= thetamax * |
else { /* clip thetal */
if (theta3 <= thetamax) {
if ((theta2 > thetal) | (theta2 < theta3)) {
/* clip thetal to zero */
get_mpt(proj, ref0, mpt);
m_code = 4,
}
else {
/* clip thetal to thetamax * |
get_mpt(proj, refm, mpt);
rin_code = 6;
}
/* Save the clipped information * |
for (i = 0; i < 3; i++) {
rot_plane[*count].pt[i] = mpt[i];
rot_plane[*count].del[i] = proj->rp3[i] - mpt[i};

*count = *count + 1;
} /* if theta3 > thetamax * [

else { /* clip both thetal and theta3 * |/
if ((thetal < theta3) & ((theta2 < thetal) | (theta2 > theta3))) {
/* clip thetal to thetamax, thetal to zero * [

get_mpt(proj, refm, mpt);
= 0; i < 3; i++)

for (i =
rot_plane[*count].ptfi] = mpt[i];

get_mpt(proj, ref0, mpt);
for (i = 0; i < 3; i++)
rot_plane[*count).del{i] = mpt[i] — rot_plane[*count].pt[i];

*count = *count + 1;
= 22;

rtn_code =

Aug 22 14:10 1990

renvel.c

Page 7 of renvel.c

— renvel.c Plane Sweep Softwarc Listing renvel.c

- } /* if thetal < theta3 etc */

else /* segment is not swept * [
mn_code = 0;

if ((theta3 < thetal) & ((theta2 < thetad) | (theta2 > thetal))) {

/* clip thetal to zero, thetal to thetamax * /
get_mpt(proj, ref0, mpt);
for (i = 0; i < 3; i++)

rot_plane[*count].pt[i] = mpt{i};

- - get_mpi(proj, refm, mpt);
for (i = 0; i < 3; i++)
rot_plane[*count].del(i] = mpt[i] - rot_plane[*count].pt{i];
- *count = *count + 1;
rn_code = 28;
} /* if theta3 < thetal etc */
— else {
/¥ segment is not swept * [
rm_code = 0;
)
— } /* else clip both */

} /* else clip thetal */
return(rtn_code);

} /* routine rot clip */

Aug 22 14:10 1990 Page 8 of renvel.c

rotate.c Plane Sweep Software Listing rotate.c

/*

> NOTICE OF COPYRIGHT
** Copyright (C) Rensselaer Polytechnic Institute.
> 1990 ALL RIGHTS RESERVED.
-

*x

** Pormission to use, distribute, and copy is granted ONLY
*% for research purposes, provided that this notice is

** displayed and the author is acknowledged.

>

** This software is provided in the hope that it will be
** yseful. BUT, in no event will the authors or Rensselaer
*+ be ligble for any damages whaisoever, including any lost
** profits, lost monies, business interruption, or other

** special, incidental or consequential damages arising out
*% of the use or inability to use (including but not

** [limited to loss of data or data being rendered

** ingccurate or losses sustained by third parties or a

** failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or
** for any claim by any other party.

*x

** This software was developed at the facilities of the

*¥ Center for Intelligent Robotic Systems for Space

**x Exploration, Troy, New York, thanks to generous project
** funding by NASA.

o
**x Package: Gripper Envelope Detection Using Sweep Shadows
o

** Written By: Henry L. Welch

**

*/

,*******************#**#********************lll***************************

* *
* rotatec — This module contains the higher level routines which *

* perform the 2-D plane sweep. Most of the support *

* routines used are contained in the module envelc *

* *
* Written by: Henry L. Welch November, 1989 *

* *

A R R R SR Kk R oK K K K KKK R HOROOR KKK K oK 3 K R R ko sk koK K R R kKR I

#include <stdio.h>
#include <math.h>
#include "envel.h"
#include “"const.h”
#include "datah"

vold rsweep(proj, num, hO, ref0, refm, thetamax, sign, rot_plane, count)

struct tmp rot proj[MAX_VERTS_FACE]; /* rect. proj. of face */

int num; {* number of verts * |/
float hO; /* heigt @ r=0 */
float refO[3]; /* theta O ref. vector * |/
float refm|3]; /* thetamax ref vector * [
float thetamax; /* max theta of rotation * /
float sign; /* sign of the radii */
struct rot_seg rot_plane[4*TOT_VERTS]; /* clipped segments * [

int *count; /* number of segments * |/

/* The routine rsweep performs the sweeping of a planar face through a
rotational wedge in cylindrical coordinate system. * [

Aug 22 14:13 1990 Page 1 of rotaie.c

- rotate.c

- int start;
int first;
int ccode;
int scode;

- int pecode;
int incase;
int ij;
float last[3];

[* initialize pointers and flags, then loop on all edges
start = TRUE;
first = *count;
for i = 0; i < num; i++) {

/* clip the edge * [

incase = *count;

ccode =

count);

/* determine the type of clip */
if (ccode != 0) { /* edge has a segment * /

if (start == TRUE) {
start = FALSE;
/* Save relevant data of clip code * /[

_ if ((ccode == 1) | (ccode == 16) | (ccode
scode = 0;
else Il ((ccode == 4) | (ccode == 28))
scode = 1;

else scode = 2;
} /* if start = True */
else {

/* check for type of clipping * |
If ((ccode == 4) | (ccode == 28)) {
if ((pcode == 16) | (pcode == 22)) {

/* close along theta = 0 */
for § = 0; j < 3; j+#1) (
rot_plane[*count].pt[j] =
rot_plane[*count].del[j] =

rot_plane[*count).sign = sign;
*count = *count + I
else { /* left ar theta =

/* close via r = 0 */
for G =0, j <2 j+v {

Plane Sweep Softwarc Listing

1* Entering at theta

rotate.c

* flag for no segs yet */
/* Pointer into rot_plane * [
/* Current clip code * |
/* First seg. clip code * |
/* Previous clip code * |/

f* Temporary pointer * [

/* Loop indices * [

/* Last included point * /

*/

rot_clip(&projli], sign, ref0, refm, thetamax, h(, rot_plane,

[* Process first edge with a segment * |

24))

0 */
0 */

/* left at theta

lastfj];
rot_plane(*count - 1].ptfj] ~

last(jl;

thetamax * /

rot_plane[*count].pt[j] = last[j];
- rot_plane{*count].del(j] = -last[j];
rot_plane[*count+1].ptfjl = 0.0;

rot_plane{*count+1].del[j]

rot_plane[*count-1].pt[j];

rot_plane{*count].pt{2] = last{2);
rot_plane[*count].del{2] = h0 - last[2];
rot_plane[*count+1].pt[2] ho;

rot_plane[*count+1].del{2}

rot_plane[*count].sign =
*count = *count + 2;

Aug 22 14:13 1990

rot_plane[*count-1].pt[2] — hO;

rot_plane[*count+1).sign = sign;

Page 2 of rotate.c

rotate.c Plane Sweep Software Listing rotate.c

} /* else left at theta = thetamax * |

} /* if coming in at theta = 0 */
else If ((ccode == 6) | (ccode == 22)) { /* Enter @ thetamax * [
it ((pcode ==16) | (pcode == 22)) { /* Left at theta = 0 */

J* close via r = 0 */
for (j = 0; j < 2; j+) |
rot_plane{*countl.ptlj] = last[j};

rot_plane[*count].del[j] —last[j];
rot_plane{*count+1].pj] = 0.0;
rot_plane[*count+1].del(j] = rot_plane[*count-1].pt(j};

)

rot_plane[*count].pt{2] = last[2];
rot_plane[*count].del{2] = h0 - last[2];

hO;

rot_plane[*count+1].pt{2]
rot_plane[*count-1].pt{2] — hO0;

rot_plane[*count+1].del[2]

rot_plane[*count].sign = rot _plane[*count+1].sign = sign;
*count = *count + 2;
} /* if left at theta = 0 */
else { /* left at thetamax */

/* close along thetamax */
for G =0; j <3 j+0 |
rot_plane[*count].pt[j] = last(j];
rot_plane(*count].delfj] = rot _plane[*count — 1].pt[j] -
last[j;

rot_plane[*count].sign = sign;
*count = *count + 1;
} /* else left at thetamax * [
} /* if entered at thetamax * /
} /* else check for type of clip */
/* Process clip on exit if it exists */
it ((ccode == 16) | (ccode == 24) | (ccode == 22) |
(ccode == 28)) {
pcode = ccode;
for (j = 0; j < 3; j++) [* save last valid point * |/
last[j] = rot_plane[incase].ptlj] +
rot_plane|incase].del(j};
} /* if clip on exit */

} /* if ccode <> 0 */
) /X for i =0%*]

if (start == FALSE) { /* close clip from beginning * [

if ((scode == 1) & ((pcode == 16) | (pcode == 22))) |
((scode == 2) & ((pcode == 24) | (pcode == 28)))) {

/* clip on one side only * |/
for G = 0; j < 35 j+ |
rot_plane[*count].pt(j]
rot_plane{*count].del[j]

last[j};
rot_plane(first].pt[j}
last(j];

rot_plane[*count].sign = sign;
*count = *count + 1;

Aug 22 14:13 1990 Page 3 of rotate.c

rotate.c Plane Sweep Softwarc Listing rotate.c

} /* if clip on one side * |/

else if (((scode == 1) & ((pcode == 24) | (pcode == 28))) |
(scode == 2) & ((pcode == 16) | (pcode == 22)))) {

/* close via r = 0 */

for G = 0; j < 2; j++) {
rot_plane[*count].pt{jl = lastfj];
rot_plane(*count].del(j] = -last[j];

0.0;

rot_plane{*count+1].pt[j)
rot_plane(first].pt[j};

rot_plane[*count+1].del(j]

rot_plane{*count].p{2] = last[2];
rot_plane[*count].del[2] = h0 - last[2];

h0;

rot_plane[*count+1].pt[2] ;
rot_plane(first).pt{2] — h0;

rot_plane{*count+1].del[2]

rot_plane[*count].sign = rot_plane[*count+1].sign = sign;
*count = *count + 2;
} /* close via r = 0 */

} /* if start = false */

} /* routine rsweep * [

void do_rsweep (verts, num_objects, f count, v_count, norms,

struct
int

int
int
struct
float
float
float
float
float
struct
int

origin, ref, ref0, refm, thetamax, rot_plane, count)

coord3 verts]MAX_OBJECTS][MAX_FACES][MAX_VERTS_FACE]; /* obj verts * /

num_objects; 1* number of objects * [
f_countfMAX_OBIJECTS]; /* face count * |
v_count{MAX OBIJECTS][MAX FACES]; /* vert count per face * |/
coord3 norms[MAX_OBJECTS][MAX_FACES]; /* normals for faces * /
origin{3]; [* rotation origin * [
ref[3]1(3]; /* inverted basis * |
ref0[3]; /* theta O ref vector * |/
refm[3]; I* thetamax ref vector * [
thetamax; /* maximum theta * /[
rot_seg rot_plane[4*TOT_VERTS]; /* rotational sweep * /

*count; /¥ segments in sweep * [

* The routine do_rsweep performs a rotational sweep on the environment. * [

{
int Lk /* loop indices * /
int ve; I* vertex count * [
float pl[3].p2[3}; {* segment endpoints * [
float tmax; /* actual thetamax * |
float norm[3]; /* face normal * [
float hO; I* height @ r=0 */
struct tmp_rot proj[MAX_VERTS_FACE]; /* temp. data */

/* initialize the count and loop on each object * [
*count = 0;
for (i = 0; i < num_objects; i++) |

{* loop on each face * |/
for = 0; j < f countfi]; j++) {
ve = v_count[i]{j];

Aug 22 14:13 1990 Page 4 of rotate.c

rotate.c Plane Sweep Software Listing rotate.c

/* loop on each edge fvertex */
for (k = 0; k < (ve = 1) k++) {

/* copy over edge endpoints * /

for (1 = 0; 1 < 3; I+ {
pl[l] = vers[il[jl(k]-ptlil;
p2(l] = verss{il(jllk+1}.ptllk

/* prepare the edge * [
rot_prep(pl, p2, origin, ref, &proj[k]);
} /* for k =0 */
/* close the face */
for (1 = 0; 1 < 3; 1++) {
pill] = vens(i]jllve - 1).ptll;
p2[l] = vens[i](jI[0].pul}

rot_prep(pl, p2, origin, ref, &proj[ve-1]);

/* sweep the plane rotationally * |
get_norm(norms[i][j], ref, norm);
Oht(&proj[0], norm, &h0);

/* process the minimal radius shadow line * [
do_minr(proj, vc, norm, hO, ref0, refm, thetamax, rot _plane, count);

/* Sweep the face * |/
tmax = thetamax;

if (thetamax > pi) { /* Must sweep in two seciions */
rsweep(proj, vc, hO, ref0, ref0, pi, 1.0, rot_plane, count);
rot_refleci(proj, vc);
rsweep(proj, vc, hO, ref0, ref0, pi, —1.0, rot_plane, count),
tmax = thetamax — pi;
}
rsweep(proj, vc, hO, ref0, refm, tmax, 1.0, rot_plane, count);
rot_reflect(proj, vc);
rsweep(proj, vc, hO, ref0, refm, tmax. -1.0, rot_plane, count);

} /for j = 0%
/

} H fori=0*H%
} /* do_rsweep * /[

void analyze rot_plane(rot_plane, count, site, distance)

struct rot_seg rot_plane{4*TOT_VERTS]; /* rotational sweep results * [

int count; /* number of segments * [
float site{2]; /* grasp site coords */
float *distance; /* distance to nearest point * [

/* The routine analyze rot_plane finds the nearest linear distance from the
grasp site 1o the sweep segments. [t is done by approximating the (r.h)
curves by ten straight line segments. * |

{
int ik /¥ loop indices * [
float pt[3]; /¥ current segment point * [
float del[3]; /* segment coord steps * |

Aug 22 14:13 1990 Page S of rotate.c

rotate.c Plane Sweep Software Listing rotate.c

float r; /* radius of point * [

float temp(2]; /* temporary storage * |

float dist; /* intermediate distance * |
struct seg line; /* convenient data structure * /|

/* initialize the distance to a ridiculous value and loop on all segments * |/
*distance = 1000000000.0;

for (i = 0; i < count; i++) {

/* copy over the segment information * /
for j = 0, j < 3; j+9) {
ptl] = rot_plane{il.pt(jl;
dellj] = 0.1 * rot_plane[i].del(j];
}

/* Break the curve into 10 straight line segments * /

line.p2[0] = (float)sqri((double)(pt{0]*pt[0] + pt[1]*pt[1])) *
rot_plane[i].sign;

pzh

for (j = 0, j < 10; j++) |

line.p2[1]

/* set—up the beginning point * [
line.pl1[0] = line.p2[0];
line.plf1] = line.p2[1];
I* move ahead the delta * [
for (k = 0; k < 3; k++)
pilk] += delk];
/* set—up the ending point * /
line.p2{0] = (float)sqrt((double)(pt[0]*pt[0] + pi[1}*pi[1])) *
rot_plane[i].sign;
linep2(1] = pi(2];

/* check the distance and update accordingly * /
d_pt2seg(site, line, &dist, temp);

if (dist < *distance) *distance = dist;
Y X for j=*/
} /* for i = ¥/
*distance = (float)sqrt((double)*distance);

} 7* analyze_rot_plane * /

Aug 22 14:13 1990 Page 6 of rotate.c

sweep.c Plane Sweep Software Listing sweep.cC

/*
** NOTICE OF COPYRIGHT
b Copyright (C) Rensselaer Polytechnic Institute.
** 1990 ALL RIGHTS RESERVED.
*k

**

** Permission to use, distribute, and copy is granted ONLY
** for research purposes, provided that this notice is

** displayed and the author is acknowledged.

*x

** This software is provided in the hope that it will be
** yseful. BUT, in no event will the authors or Rensselaer
** be ligble for any damages whatsoever, including any lost
** profits, lost monies, business interruption, or other

** special, incidental or consequential damages arising out
** of the use or inability to use (including but not

** fimited to loss of data or data being rendered

** inaccurate or losses sustained by third parties or a

** failure of this software to operate) even if the user

** has been advised of the possibility of such damages, or
** for any claim by any other party.

*x

** This software was developed at the facilities of the

** Center for Intelligens Robotic Systems for Space

** Exploration, Troy, New York, thanks lo generous project

** funding by NASA.

o
** Package: Gripper Envelope Detection Using Sweep Shadows
o
** Written By: Henry L. Welch
*x
*/
/**t**************#**ﬁ***
* *
* sweep.c — This module contains the higher level routines which *
* perform the 2-D plane sweep. Most of the support *
* routines used are contained in the module envelc *
* *
* Written by: Henry L. Welch June&July, 1989 *
* *

ok ook o ok ok ok 3 ok ok ok o ook e o ok ok e ok Kok ok ok kool K sk sk ok ke iok ok 3k Skl ok ok kol oRok ok koo ok K /

#include <stdio.h>
#include <math.h>
#include "envel.h"
#include "consth”
#include "datah”

vold do_tsweep (origin, basis, length,
num_objects, f _count, v_count, verts,
plane, count)

float origin(3]; /* Defn of traj. sweep * /
float basis[3}{3]; /* Inverted basis * |
float length;
int num_objects; {* Defn of environment * |
int f coum[MAX OBIJECTS]; /* Face count [object * [
int v_count{MAX_OBJECTS][MAX_FACES]; {* Vertex count [face * |
struct coord3 vertsf]MAX_OBJECTS){MAX_FACES]

[MAX_ VERTS_FACE); I* Extracted vertices * [

Aug 22 14:14 1990 Page 1 of sweep.c

-

sweep.c

Plane Sweep Softwarc Listing

struct seg plane[2*TOT_VERTS];

int *count;

/* Swept plane * |
/* Number of segments * [

/* The routine do_tsweep performs a trajectory sweep of the trajectory

specified by origin, basis, and length.

The objects swept are those

defined using num_objects ... verts. The resulting swept segments
are contained in the structure plane. * |

{
int ijkl;
int start;
int first;
int swept;
int temp;

float p1{31.p2[3];

/* start at the beginning and loop on all objects * |

*count 0;

for (i

0; i < num_objects; i++) {

/* loop for each face * |/
for (’ = 0; j < f_count[i];]H) {

start =
first =

1;

*count;

/* loop for each vertex pair * [

for (k = 0; k < (v_count[i]j] — 1) k++) {

1* Copy over edge endpoints * [
for (1 =

pl(l]
} p2(l]

0;

1 < 3; I+ {
vertsfi][j}{k].pt(l];
verts[i][jl[k+1].pt1];

/* Sweep the edge * /

/* Loop indices * |
/* New face flag * |
/* First segment on face * [
/* Condition flag * /
/* Temporary index * /
/* Segment endpoints * [

swept = sweepseg(origin, basis, length, pl, p2, &plane[*count]);

if (swept == 1) { /* The edge was swept * /
If (start == 1) start = 0; f* Face is in plane * /
else | /* Check for continuity * /

if (start == 0) {

/*

if ((plane[*count-1].p2[0] != plane[*count].p1[0]) |
(plane[*count—1].p2[1] != plane(*count].p1[1])) {

}

/* Connect the segments over the clipped vertex * [

*count = *count + 1;
plane[*count].p1[0]
plane[*count].pl[1]
plane[*count].p2[0]
plane[*count].p2[1]
/* if ((plane * |

} /* else */
*count = *count + 1;
} I f (swept ¥/
} for (k %/

copy

for (1 =

Aug 22 14:14 1990

pl{l]
p2(1]

over first and last vertices * |

0;

1< 3 1+ {
verts[i][j}[v_count[i](j]-11.pt{l];
verts(i][5]{0].pt([1];

plane[*count-2].p2[0];
plane[*count-2].p2[1];
plane[*count—1].p1[0];
plane[*count-1].p1{1];

/* count the added segment * |/

/* try closing edge * [

sweep.c

Page 2 of sweep.c

sweep.c Plane Sweep Software Listing

/* Sweep the edge * |/
swept = sweepseg(origin, basis, length, pl, p2, &plane[*count]);

if (swept == 1) { /* The edge was swept * [
temp = *count; /* This may be needed * /
if ((plane[*count-1].p2[0] != plane[*count].p1[0]) !
(plane[*count-1}.p2[1] != plane[*count].p1[1]))

/¥ Connect the segments over the clipped vertex * [
*count = *count + 1;

plane[*count].p1[0] = plane[*count-2].p2[0];
plane[*count].pl[1] = plane[*count-2].p2(1];
plane[*count].p2[0] = plane[*count-1].p1[0];
plane[*count].p2[1] = plane[*count-1).p1[1];

} /* if ((plane * |

/* Check the other end * [
if ((plane[first].p1[0] != plane{temp].p2{0]) !
(plane(first].pl{1] != plane(temp].p2[1])) {

/* Connect the segments over the clipped vertex * [
*count = *count + I;

plane[*count].p1[0] = plane[temp].p2[0];
plane[*count].p1[1] = plane[temp].p2[1]};
plane[*count].p2[0] = plane[first).p1[0];
plane[*count].p2[1] = plane[first].p1[1];

} ¥ if ((plane * |

*count = *count + 1; /* count the added segment * [

} /* U (swept ¥/
} i (start *]
} M for (j*/

} M for (i */
} /* routine do_tsweep * [

vold extract_verts (num_objects, objs, object, xfm_verts,
f count, v_count, verts)

int num_objects; /* number of objects * |
int objs[MAX_OBJECTS]; /* Objects in use * [
struct n_object object{MAX_OBJECTS]; /* Object data * /

struct coord3 xfm_veris[MAX_OBJECTS}{MAX _ VERTS]; /* Transformed verts * /

Int f count[MAX OBJECTS]; I* Face count |object * [
int v_count{MAX_OBJECTS}[MAX_FACES]; /* Vertex count [face * [

struct coord3 vertsyMAX_OBJECTS][MAX_FACES][MAX_VERTS_FACE];

/* The routine extract_verts aligns the transformed object vertices
into a more useful format. * /

int ikl /* Loop indices * [
int current_obj; /* Object in use * |/

/* Loop on the objects * /[
for (i = 0; i < num_objects; i++) {
current_obj = objs[il;

/* Loop on all faces * |/
f_count[i] = object{current_obj].num_faces;
for G = 0, j < f_count[i]; j++) {

/* Loop on all vertices * |/

v_count[i][j] = object[current_obj].vert_count[j};
for (k = 0; k < v_count[i][jl; k++)

Aug 22 14:14 1990

sweep.c

Page 3 of sweep.c

sSweep.C Plane Sweep Software Listing

/* copy over the vertex coordinates * /
for (1 = 0; 1 < 3; 1++)
verts[i][jllk].pt[l] = xfm_verts[current_obj]
[object[current_obj].vert_list[j}(k]].pt(l];
) ™ for (j *1/
} /* for (i */

} [/* routine extract verts * |

void xfm_objects(num_objects, objs, object, xfm_verts, xfm_norms)

int num_objects; /* Number of objects * [
int objs[MAX OBIJECTS]; * Objects in use * |/
struct n_object objectMAX_OBJECTS]; /* The objects * [

struct coord3 xfm_vertslMAX_OBJECTS}[MAX_ VERTS]; /* Transformed vertices * /
struct coord3 xfm noxms[MAX OBJECTS][MAX _FACES); /* Transformed normals * /

/* The routine xfm_objects scales, rotates, and translates the objects
in the environment to the appropriate location in the assembly * [

{
int ijk; I* Loop indices * [
int current_obj; /* Object being xformed * |/
float sc_mat[4]{4]; /* Scaling matrix */
float ph mat[4]{4]; /* Phi rotation matrix * /
float th_mat[4][4]; /* Theta rot. matrix * [
float tr_mal[4][4] /¥ Translation matrix * /
float t_matl[4}{4], t_mat2[4][4), xfm_mat{4][4]; /* Combined matrices */
struct t_coord4 onorm; /* Temp storage * /

* Loop on the objects * [
for (i = 0; i < num_objects; i++) {
current_obj = objs[i];

/* Prepare transformation matrices * |
for § = 0; j < 4 j+ {
for k = 0; k < 4 k++) {
sc_mat[j][k] =
ph_mat[j](k] =
th_mat[j]ik] =
r_mat[j](k] =

}
sc_mat[j][j]
ph_mat[j](j]
th_mat[jl[j]
tr_mat[j](j]

Y > for (j ¥

r (=20 j<3; j+) {
5C mal[]][_]] object[current_obj].scale;
tr_mat[3](j} object[current_obj].xlate{j];

OOO

1.0;
1.0;
0;
.0;

~H" oy
=,

}

th_mat[1][1

] = (float)cos({double)object[current_obj].theta);
th mat[1][2]

]

1

float)sin((double)object{current_obj].theta);
—th_mat[1](2];
th_mat{1][1];

~ o~

th_mat[2](1
th_mat[2}[2

W un II

ph_mat[0}{0]
ph_mat[0]{1]
ph_mat[1][1]
ph_mat[1]{0]

(float)cos((double)object{current_obj].phi);
(Moat)sin((double)object[current_obj].phi);
ph_mat[0][0];

—ph_mat[0][1];

Aug 22 14:14 1990

sweep.c

Page 4 of sweep.c

sweep.c Plane Sweep Software Listing sweep.c

/* Combine the matrices * [
matdmui(sc_mat, ph_mat, t_matl);
matdmul(th_mat, tr_mat, t_mat2);
matdmul(t_matl, t_mat2, xfm_mat);

/* Transform the vertices for this object * |
for (j = 0; j < object[current_obj}.num_verts; j++)
do_xfm (xfm_mat, object{current_obj].vertices[j],
&xfm_vens[i}{j1);

/* Transfrom the face normals for this object * |
matdmul(ph_mat, th_mat, xfm_mat);
for (j = 0; j < object[current_objj.num_faces; j++) {

/* Prepare the appropriate data type * |
onorm.x = object[current_obj].normals(j].x;
onorm.y = object[current_obj]l.normals[jl.y;
onorm.z = object[current_obj].normals{j).z;
onormw = 1.0;

/* Transform the normal * |/
do_xfm(xfm_mat, onorm, &xfm_norms[i](j]}
}

) /> for (i */
} 1* routine xfm_objects * /

vold analyze plane (plane, count, type, site, normal, distance)

struct seg plane [2*TOT_VERTS]; /* sweep plane * |

int count; /* segments in the plane * /
int type; /* type of area to consider * [
float site[2]; /* location of grasp site * /

float normal[2}; /* half-plane normal * [

float *distance; /* heuristic distance returned * [

/* The routine analyze_plane, scans a sweep plane of segmenis to determine the
square of the distance 1o the nearest obstruction. Whether the entire
plane or only half is considered depends on the flag type. */

{ struct seg oplane[2*TOT_VERTS]; /* halved plane * /
int ocount; /* number of segments * [
float dist; /* temporary distance * [
int i /* a loop index * [/
float pt[2]; /* nearest point on segment * [

/* determine if only half the plane need be considered * /
if (type == 1) /* halve the plane */

half_plane(plane, count, site, normal, oplane, ocount);
else

ocount = count;

/* find the distance to the first point * [

ir (type == 1)

d_pt2seg(site, oplane[0], &dist, pt);
else

d_pt2seg(site, plane[0], &dist, pt);

*distance = dist;

Aug 22 14:14 1990 Page 5 of sweep.c

sweep.c Plane Sweep Software Listing

I* process the remaining points * [
for (i = 1; i < ocount; i++) {
if type = 1)
d_pt2seg(site, oplane[i], &dist, pt);
else
d_pt2seg(site, plane(i], &dist, pt);

If (dist < *distance) *distance = dist;

}

I* take the square root of the result * [
*distance = (float)sqrt((double)*distance);

} /* routine analyze plane * /
™ *(splane + 3) */

Aug 22 14:14 1990

sweep.c

Page 6 of sweep.c

sweepio.c Plane Sweep Software Listing
/*

** NOTICE OF COPYRIGHT

bl Copyright (C) Rensselaer Polytechnic Institute.

** 1990 ALL RIGHTS RESERVED.

%

%

-
-
¥
%
*
%
¥
%
**
**
**%
%
.
.
*x
ok
%
%
*k
*%
*k
*=x
ok
"
X

*/

Permission to use, distribute, and copy is granted ONLY
for research purposes, provided that this notice is
displayed and the author is acknowledged.

This software is provided in the hope that it will be
useful. BUT, in no event will the authors or Rensselaer
be liable for any damages whatsoever, including any lost
profits, lost monies, business interruption, or other
special, incidental or consequential damages arising ouwt
of the use or inability to use (including but not
limited to loss of data or data being rendered
inaccurate or losses sustained by third parties or a
failure of this software to operate) even if the user
has been advised of the possibility of such damages, or
for any claim by any other party.

This software was developed at the facilities of the

Center for Intelligent Robotic Systems for Space
Exploration, Troy, New York, thanks to generous project
funding by NASA.

Package: Gripper Envelope Detection Using Sweep Shadows

Written By: Henry L. Welch

/***it#*ii*************i#**********#**********************#****t****

x
*
*
*
*

sweepioc — This module contains the input Joutput support *
routines for the 2-D plane sweep used in the
gripper envelope problem.

Written by: HLW August, 1989

#**tt********#*****************#**t****************************ii*t/

#include <stdio.h>
#include <math.h>
#include "envel.h"
#include "consth”’
#include "datah"

void printmat(mat)

float mat[3]{3];

/*
{

The routine printmat prints ow a 3x3 matrix to the terminal screen */

int ij; /* Loop indices * |/

for i = 0; i < 3; i++) {
for (j = 0; j < 3; j++)
printf ("%f " mat[i}{j]);
printf (")

} /* End routine printmat * /

vold dump_plane(plane, count, traj)

Aug 22 14:15 1990

/* The matrix to print */

sweepio.c

Page 1 of sweepio.c

sweepio.c Plane Sweep Softwarc Listing

struct seg plane[2*TOT_VERTS]; /* Plane to print * [/

int count; /* Number of segments * [
int traj; /* Trajectory number * [

/* The routine dump _plane sends a graph [sunplot compatible version
of the swept plane data to the file "dump"+traj * [

{
int i; /* Loop index * [
FILE *f; /* File pointer * [
char *num(6]; /* file number ¥/

/* identify the trajectory number * [
sprintf(num, "dump%d", traj);
f = fopen(num, "w"); /* Open the file * |

for i = 0; i < count; i ++)
fprintf(f, "%f %f %f %f \" \" \n", plane[i].p1[0], plane[i].p1[1],
plane[i].p2[0], plane[i].p2[1]);
fclose(f);
} /* routine dump_plane * |
vold read_plane(plane, count)
struct seg plane[2*TOT_VERTS]; {* Plane to print * [

int *count; /* Number of segments * [

/* The routine dump plane sends a graph [sunplot compatible version
of the swept plane data to the file “dump” * |/

char i[50]; f* Junk string * [/
FILE *f; /* File pointer * [
f = fopen("dump”, "r"); * Open the file * |/
*count = 0;

while (Meof(f)) {
fscanf(f, "%f%f%{%{%s%s", &plane[*count].pl[0], &plane[*count].pl[1],
&plane[*count].p2[0}, &plane[*count].p2[1],

i, i);
*count = *count + 1I;
)
fclose(f);

} /* routine read plane * [

void read CAD (num_objects, object, objs)

int *num_objects; /* number of objects */
struct n_object objectfMAX_ OBIJECTS]; /* objects * /

int objsIMAX_OBJECTS]}; /* objects in use * |/

f* The routine read CAD inputs the CAD data to be used by the sweep
algorithm. * |

char infil[80]; /* CAD file name * [

Aug 22 14:15 1990

sweepio.c

Page 2 of sweepio.c

sweepio.c Plane Sweep Softwarc Listing sweepio.c

FILE *inptr; /* file pointer * [
int ij.k; /* loop indices * [
float *pn; /* a useful pointer * [

/* read in object * [
inpr = 0;
while (inpr == 0) {
printf("Enter the name of the CAD data file: ");
scanf("%s", infil);
if ((inpr = fopen(infil, "r")) = 0)
printf("error opening input file\n");

/* read number of objects * [
fscanf(inptr, "%d", num_objects),

[* for each object * /
for (i = 0; i < *num_objects; i++) {

/* read number of polygons and faces * [
fscanf(inptr, "%d %d", &object[i].num_verts, &object{i].num_faces);

/* read in the theta, phi, and scale factors for the object */
fscanf(inptr, "%f %f %f", &object[i].theta, &object[i].phi,
&object[i].scale);

/* read in the translational position of the object * |
fscanf(inptr, "%f %f %f", &object[i].xlate[0], &objecti].xlate[1],
&object[i].xlate]2]);

J* read in the coordinates for each face * [
for (j=0; j<object{i]l.num_verts; j++) {
fscanf(inptr, "%f %f %f", &object(i].vertices[j].x,
&objectfi].vertices[jl.y, &object(i].vertices{j].z);
object]i].vertices[jl.w = 1.0;

/* read in the vertex list and normals for each face * /[
for (j=0; j<object[i).num_faces; j++) {
fscanf(inptr, "%d", &object{i].vert_count[j]);
for (k=0; k<object[i].vert_count[j]; k++)
fscanf(inptr, "%d", &object[i].vert_list[j][k]}
fscanf(inptr, "%f %f %f", &object{i].normals(j].x,
&object[i].normals(j).y, &object{i].normals[j].z);

)
/¥ Make all objects in use * |/
objsfi] = i;
} /* for (i */

fclose(infil);
} /* routine read CAD * |/

vold dump_rot_plane(rot_plane, count, traj)

struct rot_seg rot_plane[4*TOT_VERTS]; /* rotational sweep result * [
int count; /* number of segments * /[
int traj; /* trajectory number */

/* The routine dump_rot_plane creates a sunplot readable file for displaying
the results of the current rotational sweep. * |

Aug 22 14:15 1990 Page 3 of sweepio.c

sweeplio.c Plane Sweep Software Listing
int Lj.k; /* loop indices */
FILE *f; I* file pointer * /
char *num{6]; /* file name * /
float pt[3]; /* current point * [
float del[3]; /* segment step values * [
float r; /* computed radius * /

[* identify and open the ouwput file * |
sprintf(num, "dump%d", traj);

f = fopen(num, "w");

[* for each rotational segment * [
for (i = 0; i < count; i++) {

/* extract the segment data * |
for G = 0; j < 3; j++) {

ptjl = rot_planefi].pt[j};

del[j] = 0.1 * rot_plane[i).del[j};

[* break the curve into 10 straight line segments * [
for G = 0; j < 10; j++) {
r = (float)sqr((double)(pi0]*pt0] + pu1]*pi[1])) *
rot_plane[i].sign;
fprintf(f, "%f %f \n", r, pt[2]);

/* update the point information * |
for (k = 0; k < 3; kt++)
ptik] += dellk];
Y Moforj i

/* print out the last segment * [
r = (float)sqri((double)(pt[0)*pt[0] + pt[1]*pi[1])) * rot_plane(i).sign;
fprintf(f, "%f %f \" \" \n", r, pt[2}]);

Y /* for i ¥/

fclose(f);
} 7/* routine dump rot plane * [

Aug 22 14:15 1990

sweepio.c

Page 4 of sweepio.c

test.c

/*

*x%
xk
%
%
%

Plane Sweep Software Listing

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1990 ALL RIGHTS RESERVED.

*+ Pormission to use, distribute, and copy is granted ONLY
** for research purposes, provided that this notice is
** displayed and the author is acknowledged.

%

#* This software is provided in the hope that it will be
** yseful. BUT, in no event will the authors or Rensselaer
** be liable for any damages whatsoever, including any lost
** profits, lost monies, business interruption, or other

*x special, incidental or consequential damages arising out
** of the use or inability to use (including but not

** limited to loss of data or data being rendered

** inaccurate or losses sustained by third parties or a

** failure of this software to operale) even if the user

** has been advised of the possibility of such damages, or
** for any claim by any other party.

**%

** This software was developed at the facilities of the
*+ Center for Intelligent Robotic Systems for Space
#* Exploration, Troy, New York, thanks to generous project

** funding by NASA.

*%

** Package: Gripper Envelope Detection Using Sweep Shadows

x¥

** Written By: Henry L. Welch

*x
*/

/****************#*****************#**************************l*********#****

*® % * H ®

Written by: HLW June 1990

testc — This is the sample call frame for the plane sweep software. *

#********t*********t*********************##********************ti**#l*******/

#include
#include
#include
#include

main()
{
float
float
float
float
float
float
float
float
float
float
float
int
int

<stdio.h>
“envel.h”
“const.h”
"data.h"

coord[3][3];
inv{3](3];
origin[3];
axis[3];
refpt[3};
refO[3];
refm[3];
len;
distance;
site[2];
norm[2];
ttype;
type;

Aug 22 14:19 1990

/* sweep coord system * [
/¥ inverted coord system * [
/* sweep origin * /
f* rotation axis * |/
[* reference point * /[
/¥ theta 0 reference vector * |
[* theta max reference vector * [
[* length of the sweep */
/* heuristic distance in plane * [
{* location of grasp in plane * |
/* grasp site normal * |/
/* 1rajectory type * [
[* grasp type */

test.c

main

Page 1 of test.c

test.c

int

int
FILE
char
struct
int

int

int

int
struct
struct
struct
int
struct
struct
int

Plane Sweep Software Listing test.c
...main
num_ grasps; /* number of grasp sites * |
1,j.k; /* loop indices * /
inptr; I input file pointer */
infil{80]; /* inpuwt filename * [
n_object object{MAX_ OBJECTS]; /* objects to process * [
num_objects; /* number of objects * [
objs(MAX OBIJECTS]; /* object usage list * |/
f_count{MAX_ OBJECTS]; /* face count per object * [
v_count{MAX OBIJECTS]{MAX FACES]; [* vertex count per face * /[
coord3 vertslMAX_OBJECTS][MAX_FACES][MAX_VERTS_FACE]};
seg plane[2*TOT_VERTS]; /* swept plane * /
rot_seg rot_plane[4*TOT_VERTS]; /* rotated plane * |
count; /* segmenis in swept plane * |
coord3 xfm_verntsy]MAX_OBJECTS)[MAX_ VERTS];

coord3 xfm_norms[MAX_OBIJECTS](MAX_FACES];
num_traj; /* number of trajectories * /

/* inpwt the objects * |/
read_CAD (&num_objects, object, objs);

/* open the trajectory file * |
inptr = 0;
while (inptr == 0) {

printf("Enter the name of the file containing sweep info: ");
scanf("%s", infil);
it (Ginpr = fopen(infil, “r")) == 0)

printf("error opening file\n");

/* read in the objects to be used in this scan * /
fscanf(inptr, "%d”, &num_objects);

for (i = 0; i < num objects; i++)

fscanf(inptr, "%d", &objs[i]);

/* preprocess the objects so they are where they belong * /
xfm_objects(num_objects, objs, object, xfm_verts, xfm_norms);

/* extract the vertices * |
extract_verts(num_objects, objs, object, xfm_verts, f_count,

v_count, verts);

/* Find the trajectory sweep information. * |
/* read the number of trajectories * |
fscanf (inptr, "%d", &num_traj);

I* for each trajectory * |
for (i = 0; i < num_traj; i++) |

/* read in the type of sweep O=line I=rotate * |
fscanf(inptr, "%d", &ttype);

if (itype == 0) {

/* read in the reference coordinate system for the trajectory * |/
for = 0; j < 3; j++)
fscanf(inptr, "%f", &origin[j]);

for G = 0, j < 3; j++)
for k = 0; k < 3; k+r+)
fscanf (inptr, "%f", &coord[j](k]);

Aug 22 14:19 1990 Page 2 of test.c

test.c Plane Sweep Softwarc Listing test.c

..Jmain

/* read in the length of the trajectory * |
fscanf(inptr, "%f", &len);

/* invert the coordinate system * [
mat3inv(coord, inv);

[* perform the sweep * |
do_tsweep(origin, inv, len, num_objects, f_count, v_count, verts,
plane, &count);

/* save the sweep data * [
dump_plane(plane, count, i);
} *if {iype == 0 */

else { /* process a rotation */

/* read in the origin of the rotation */
for G = 0, j < 3; j+H)
fscanf(inptr, "%f", &origin[j]);

/* read in the rotation axis * /
for (j = 0; j < 3; j++)
fscanf(inptr, "%f", &axis[j])

/* read in the reference point * [
for(j=0;j<3;j++)
fscanf(inptr, "%f", &refpt[jl);

/* read in the angle of rotation in radians */
fscanf(inptr, "%f’, &len);

/¥ set up the various reference veclors elc x f
getrotref(axis, origin, len, refpt, inv, ref0, refm);

/* handle the rotational sweep * /|
do_rsweep(verts, num_objects, f count, v_count, xfm_norms,
origin, inv, ref0, refm, len, rot_plane, &count);
printf(" TOTAL: gd\n",count);
/* save the data for plotting * |
dump_rot_plane(rot_plane, count, i);
} /* else */

/* evaluate each grasp site for suitability * [
fscanf(inptr, "%d”, &num_grasps);

for (j =0; j < num_grasps; j++) {

/* Read in each grasp site and process it */
fscanf(inptr, "%d %f %f’, &type, &site[0], &site[1]);

if (type == 1) /* read in the normal * /
fscanf(inptr, "%f %f", &norm([0], &norm([1});

it (type == 0)

analyze_plane(plane, count, type, site, norm, &distance);
else

analyze_rot_plane(rot_plane, count, site, &distance);

printf (" The distance for segment %d, grasp %d is: %f \n",
i, j, distance);

Aug 22 14:19 1990 Page 3 of test.c

test.c Plane Sweep Software Listing test.c

...main
} /* end for (j = 0 */

) /* end for (i = 0 *]

fclose(infil);
} /* end main */

Aug 22 14:19 1990 Page 4 of test.c

